Suppr超能文献

基于多尺度流的卡通动画遮挡效果与内容分离

Multi-Scale Flow-Based Occluding Effect and Content Separation for Cartoon Animations.

作者信息

Xu Cheng, Qu Wei, Xu Xuemiao, Liu Xueting

出版信息

IEEE Trans Vis Comput Graph. 2023 Sep;29(9):4001-4014. doi: 10.1109/TVCG.2022.3174656. Epub 2023 Aug 1.

Abstract

Occluding effects have been frequently used to present weather conditions and environments in cartoon animations, such as raining, snowing, moving leaves, and moving petals. While these effects greatly enrich the visual appeal of the cartoon animations, they may also cause undesired occlusions on the content area, which significantly complicate the analysis and processing of the cartoon animations. In this article, we make the first attempt to separate the occluding effects and content for cartoon animations. The major challenge of this problem is that, unlike natural effects that are realistic and small-sized, the effects of cartoons are usually stylistic and large-sized. Besides, effects in cartoons are manually drawn, so their motions are more unpredictable than realistic effects. To separate occluding effects and content for cartoon animations, we propose to leverage the difference in the motion patterns of the effects and the content, and capture the locations of the effects based on a multi-scale flow-based effect prediction (MFEP) module. A dual-task learning system is designed to extract the effect video and reconstruct the effect-removed content video at the same time. We apply our method on a large number of cartoon videos of different content and effects. Experiments show that our method significantly outperforms the existing methods. We further demonstrate how the separated effects and content facilitate the analysis and processing of cartoon videos through different applications, including segmentation, inpainting, and effect migration.

摘要

遮挡效果在卡通动画中经常被用来呈现天气状况和环境,如下雨、下雪、树叶飘动和花瓣飞舞等。虽然这些效果极大地丰富了卡通动画的视觉吸引力,但它们也可能在内容区域造成不期望的遮挡,这显著地使卡通动画的分析和处理变得复杂。在本文中,我们首次尝试将卡通动画中的遮挡效果和内容分离。这个问题的主要挑战在于,与现实且尺寸较小的自然效果不同,卡通效果通常具有风格化且尺寸较大。此外,卡通中的效果是手绘的,所以它们的运动比现实效果更不可预测。为了分离卡通动画中的遮挡效果和内容,我们建议利用效果和内容运动模式的差异,并基于多尺度流效应预测(MFEP)模块捕捉效果的位置。设计了一个双任务学习系统来同时提取效果视频并重建去除效果后的内容视频。我们将我们的方法应用于大量具有不同内容和效果的卡通视频。实验表明,我们的方法显著优于现有方法。我们进一步展示了分离后的效果和内容如何通过不同的应用,包括分割、修复和效果迁移,促进卡通视频的分析和处理。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验