Cheng Peng, Zhang Guoqing, Zhang Weidong, He Shuping
IEEE Trans Cybern. 2023 Sep;53(9):5729-5740. doi: 10.1109/TCYB.2022.3169530. Epub 2023 Aug 17.
This article concerns the co-design scheme of the adaptive event-triggered mechanism (AETM) and asynchronous H control for two-dimensional (2-D) Markov jump systems. First, we introduce a hidden Markov model with the observation that the asynchronous phenomenon is inevitable between the plant mode and the controller mode. Besides, for economizing the communication times, an innovative 2-D AETM is constructed, which can dynamically regulate the event-triggered thresholds to strive for better system performance. Then, by utilizing the 2-D Lyapunov stability theory, nonlinear matrix inequalities are built to ensure the asymptotic mean-square stability with an H performance for the closed-loop 2-D system. To avoid introducing any conservatism when handling the above nonlinear matrix inequalities, a binary-based genetic algorithm (BGA) is exploited to treat some variables as known, such that derive some directly solvable linear matrix inequalities. Finally, a simulation example is provided to verify the effectiveness of the proposed 2-D AETM-based asynchronous controller strategy with a BGA.
本文涉及二维马尔可夫跳跃系统的自适应事件触发机制(AETM)与异步H控制的协同设计方案。首先,我们引入一个隐马尔可夫模型,观察到在被控对象模式与控制器模式之间异步现象不可避免。此外,为节省通信次数,构建了一种创新的二维AETM,它可以动态调节事件触发阈值以追求更好的系统性能。然后,利用二维李雅普诺夫稳定性理论,建立非线性矩阵不等式以确保闭环二维系统的渐近均方稳定性并具有H性能。为避免在处理上述非线性矩阵不等式时引入任何保守性,采用基于二进制的遗传算法(BGA)将一些变量视为已知量,从而导出一些可直接求解的线性矩阵不等式。最后,给出一个仿真例子以验证所提出的基于二维AETM的带BGA的异步控制器策略的有效性。