Suppr超能文献

非对比增强 VI-RADS 的临床有效性:使用高梯度磁场 3-T MRI 的前瞻性研究。

Clinical validity of non-contrast-enhanced VI-RADS: prospective study using 3-T MRI with high-gradient magnetic field.

机构信息

Department of Radiology, Kyorin University School of Medicine, 6-20-2 Shinkawa, Mitaka, Tokyo, 181-8611, Japan.

Department of Urology, Kyorin University School of Medicine, 6-20-2 Shinkawa, Mitaka, Tokyo, 181-8611, Japan.

出版信息

Eur Radiol. 2022 Nov;32(11):7513-7521. doi: 10.1007/s00330-022-08813-4. Epub 2022 May 12.

Abstract

OBJECTIVES

To develop a modified Vesical Imaging Reporting and Data System (VI-RADS) without dynamic contrast-enhanced imaging (DCEI), termed "non-contrast-enhanced VI-RADS (NCE-VI-RADS)", and to assess the additive impact of denoising deep learning reconstruction (dDLR) on NCE-VI-RADS.

METHODS

From January 2019 through December 2020, 163 participants who underwent high-gradient 3-T MRI of the bladder were prospectively enrolled. In total, 108 participants with pathologically confirmed bladder cancer by transurethral resection were analyzed. Tumors were evaluated based on VI-RADS (scores 1-5) by two readers independently: an experienced radiologist (reader 1) and a senior radiology resident (reader 2). Conventional VI-RADS assessment included all three imaging types (T2-weighted imaging [T2WI], diffusion-weighted imaging [DWI], and dynamic contrast-enhanced imaging [DCEI]). Also evaluated were NCE-VI-RADS comprising only non-contrast-enhanced imaging types (T2WI and DWI), and "NCE-VI-RADS with dDLR" comprising T2WI processed with dDLR and DWI. All systems were assessed using receiver-operating characteristic curve analysis and simple and/or weighted κ statistics.

RESULTS

Muscle invasion was identified in 23/108 participants (21%). Area under the curve (AUC) values for diagnosing muscle invasion were as follows: conventional VI-RADS, 0.94 and 0.91; NCE-VI-RADS, 0.93 and 0.91; and "NCE-VI-RADS with dDLR", 0.96 and 0.93, for readers 1 and 2, respectively. Simple κ statistics indicated substantial agreement for NCE-VI-RADS and almost perfect agreement for conventional VI-RADS and "NCE-VI-RADS with dDLR" between the two readers.

CONCLUSION

NCE-VI-RADS achieved predictive accuracy for muscle invasion comparable to that of conventional VI-RADS. Additional use of dDLR improved the diagnostic accuracy of NCE-VI-RADS.

KEY POINTS

• Non-contrast-enhanced Vesical Imaging Reporting and Data System (NCE-VI-RADS) was developed to avoid risk related to gadolinium-based contrast agent administration. • NCE-VI-RADS had predictive accuracy for muscle invasion comparable to that of conventional VI-RADS. • The additional use of denoising deep learning reconstruction (dDLR) might further improve the diagnostic accuracy of NCE-VI-RADS.

摘要

目的

开发一种不使用动态对比增强成像(DCEI)的改良膀胱成像报告和数据系统(VI-RADS),称为“非增强对比 VI-RADS(NCE-VI-RADS)”,并评估去噪深度学习重建(dDLR)对 NCE-VI-RADS 的附加影响。

方法

2019 年 1 月至 2020 年 12 月,前瞻性纳入 163 例接受高梯度 3T 膀胱 MRI 检查的患者。共有 108 例经经尿道切除术病理证实为膀胱癌的患者接受了分析。由两名独立的读者(一名经验丰富的放射科医生[读者 1]和一名高级放射科住院医师[读者 2])根据 VI-RADS(评分 1-5)对肿瘤进行评估。常规 VI-RADS 评估包括所有三种成像类型(T2 加权成像[T2WI]、弥散加权成像[DWI]和动态对比增强成像[DCEI])。还评估了仅包括非增强成像类型(T2WI 和 DWI)的 NCE-VI-RADS,以及包括 T2WI 用 dDLR 处理的“NCE-VI-RADS 与 dDLR”。使用受试者工作特征曲线分析和简单和/或加权κ统计对所有系统进行评估。

结果

在 108 例患者中有 23 例(21%)存在肌肉侵犯。读者 1 和 2 诊断肌肉侵犯的曲线下面积(AUC)值分别为:常规 VI-RADS,0.94 和 0.91;NCE-VI-RADS,0.93 和 0.91;和“NCE-VI-RADS 与 dDLR”,0.96 和 0.93。简单κ统计表明,读者 1 和读者 2 之间的 NCE-VI-RADS 具有高度一致性,常规 VI-RADS 和“NCE-VI-RADS 与 dDLR”具有几乎完美的一致性。

结论

NCE-VI-RADS 对肌肉侵犯的预测准确性与常规 VI-RADS 相当。额外使用 dDLR 可提高 NCE-VI-RADS 的诊断准确性。

重点

• 开发非增强性膀胱成像报告和数据系统(NCE-VI-RADS)是为了避免与钆基造影剂给药相关的风险。• NCE-VI-RADS 对肌肉侵犯的预测准确性与常规 VI-RADS 相当。• 额外使用去噪深度学习重建(dDLR)可能进一步提高 NCE-VI-RADS 的诊断准确性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/465f/9668777/4627f332f1f4/330_2022_8813_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验