Suppr超能文献

使用深度神经网络话语嵌入来从绘本故事中检测自闭症。

Detecting autism from picture book narratives using deep neural utterance embeddings.

机构信息

Institute of Computer Science, Polish Academy of Sciences, Warsaw, Poland.

Faculty of Psychology, University of Warsaw, Warsaw, Poland.

出版信息

Int J Lang Commun Disord. 2022 Sep;57(5):948-962. doi: 10.1111/1460-6984.12731. Epub 2022 May 12.

Abstract

BACKGROUND

Deficits in the ability to use language in social contexts, including storytelling skills, are observed across the autism spectrum. Development in machine-learning approaches may contribute to clinical psychology and psychiatry, given its potential to support decisions concerning the diagnosis and treatment of psychiatric conditions and disorders.

AIMS

To evaluate the usefulness of deep neural networks for detecting autism spectrum disorder (ASD) from textual utterances, specifically from narrations produced by individuals with ASD.

METHODS & PROCEDURES: We examined two text encoders: Embeddings from Language Models (ELMo) and Universal Sentence Encoder (USE), and three classification algorithms: XGBoost, support vector machines, and dense neural network layer. We aimed to classify 25 participants with ASD and 25 participants with typical development (TD) based on their narrations produced during the Autism Diagnostic Observation Schedule, Second Edition (ADOS-2) picture book task. The results of computational approaches were compared with the results of standardized testing and classifications made by two psychiatrists (raters). The raters were asked to read utterances produced by a participant (without an examiner's statements and additional information) and assign a participant to one of the two groups: ASD or with typical development (TD).

OUTCOMES & RESULTS: The computer-based models had higher sensitivity, specificity, positive predictive values and negative predictive values than the raters, and lower than the two standardized instruments: ADOS-2 and Social Communication Questionnaire (SCQ).

CONCLUSIONS & IMPLICATIONS: Our findings lay the groundwork for future studies involving deep neural network-based text representation models as tools for augmenting the ASD diagnosis or screening. Both ELMo and USE text encoders provided promising specificities, sensitivities, positive predictive values and negative predictive values. Our results indicate the usefulness of page-level embeddings for utterance representation in ADOS-2 picture book task.

WHAT THIS PAPER ADDS

What is already known on this subject Deficits in the use of language in social contexts, and narrative ability in particular, are observed across the autism spectrum. Most research on narrative skills has applied hand-coding methods. Hitherto, machine-learning methods were used mostly for image recognition problems and data from screening questionnaires for ASD classification. Detection of mental and developmental disorders from textual input is an emerging field for machine and deep-learning methods. What this paper adds to existing knowledge This study explored the ability of several types of deep neural network-based text representation models to detect ASD. Both ELMo and USE provided the most promising values of specificity, sensitivity, positive predictive values and negative predictive values. What are the potential or actual clinical implications of this work? Competitive accuracy, repeatability, speed and ease of operation are all advantages of computerized methods. They allow for objective and quantitative assessment of narrative ability and complex language skills. Deep neural network-based text representation models could in the future support clinicians and augment the decision-making process related to ASD diagnosis, screening and intervention planning.

摘要

背景

在自闭症谱系中,语言在社交情境中的运用能力存在缺陷,包括讲故事的能力。鉴于机器学习方法有可能支持对精神疾病和障碍的诊断和治疗做出决策,因此它可能会对临床心理学和精神病学产生影响。

目的

评估深度学习神经网络从文本话语中(特别是从自闭症个体的叙述中)检测自闭症谱系障碍(ASD)的能力。

方法和程序

我们检查了两种文本编码器:语言模型的嵌入(ELMo)和通用句子编码器(USE),以及三种分类算法:XGBoost、支持向量机和密集神经网络层。我们的目的是根据他们在自闭症诊断观察量表第二版(ADOS-2)绘本任务中的叙述,对 25 名 ASD 患者和 25 名典型发育(TD)患者进行分类。计算方法的结果与标准化测试和两名精神科医生(评估者)的分类结果进行了比较。评估者被要求阅读参与者(无检查者的陈述和其他信息)的陈述,并将参与者分配到以下两个组之一:ASD 或具有典型发育(TD)。

结果

基于计算机的模型比评估者具有更高的敏感性、特异性、阳性预测值和阴性预测值,而低于两种标准化工具:ADOS-2 和社会沟通问卷(SCQ)。

结论和意义

我们的研究结果为未来涉及基于深度学习神经网络的文本表示模型作为辅助 ASD 诊断或筛查的工具的研究奠定了基础。ELMo 和 USE 两种文本编码器都提供了有希望的特异性、敏感性、阳性预测值和阴性预测值。我们的结果表明,页面级嵌入对于 ADOS-2 绘本任务中的话语表示是有用的。

本文增加了什么

目前已知的有关主题的知识

在自闭症谱系中,在社交情境中使用语言的能力,特别是叙述能力,存在缺陷。大多数关于叙述能力的研究都采用了手工编码方法。迄今为止,机器学习方法主要用于图像识别问题和用于 ASD 分类的筛查问卷的数据。从文本输入中检测精神和发育障碍是机器和深度学习方法的一个新兴领域。

本文在现有知识的基础上增加了什么?

本研究探讨了几种基于深度学习神经网络的文本表示模型检测 ASD 的能力。ELMo 和 USE 都提供了最有希望的特异性、敏感性、阳性预测值和阴性预测值。

这项工作有哪些潜在或实际的临床意义?

计算机化方法的优势包括准确性、可重复性、速度和操作简便性。它们允许对叙述能力和复杂语言技能进行客观和定量评估。基于深度学习神经网络的文本表示模型将来可以支持临床医生,并增强与 ASD 诊断、筛查和干预计划相关的决策过程。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0156/9790309/8a8b86676676/JLCD-57-948-g003.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验