Bowker Michael, Lawes Naomi, Gow Isla, Hayward James, Esquius Jonathan Ruiz, Richards Nia, Smith Louise R, Slater Thomas J A, Davies Thomas E, Dummer Nicholas F, Kabalan Lara, Logsdail Andrew, Catlow Richard C, Taylor Stuart, Hutchings Graham J
Cardiff Catalysis Institute, School of Chemistry, Cardiff University, Cardiff CF10 3AT, United Kingdom.
Catalyst Hub, RCAH, Rutherford Appleton Lab, Harwell, Oxford, Didcot OX11 0QX, United Kingdom.
ACS Catal. 2022 May 6;12(9):5371-5379. doi: 10.1021/acscatal.2c00552. Epub 2022 Apr 20.
The rise in atmospheric CO concentration and the concomitant rise in global surface temperature have prompted massive research effort in designing catalytic routes to utilize CO as a feedstock. Prime among these is the hydrogenation of CO to make methanol, which is a key commodity chemical intermediate, a hydrogen storage molecule, and a possible future fuel for transport sectors that cannot be electrified. Pd/ZnO has been identified as an effective candidate as a catalyst for this reaction, yet there has been no attempt to gain a fundamental understanding of how this catalyst works and more importantly to establish specific design criteria for CO hydrogenation catalysts. Here, we show that Pd/ZnO catalysts have the same metal particle composition, irrespective of the different synthesis procedures and types of ZnO used here. We demonstrate that all of these Pd/ZnO catalysts exhibit the same activity trend. In all cases, the β-PdZn 1:1 alloy is produced and dictates the catalysis. This conclusion is further supported by the relationship between conversion and selectivity and their small variation with ZnO surface area in the range 6-80 mg. Without alloying with Zn, Pd is a reverse water-gas shift catalyst and when supported on alumina and silica is much less active for CO conversion to methanol than on ZnO. Our approach is applicable to the discovery and design of improved catalysts for CO hydrogenation and will aid future catalyst discovery.
大气中一氧化碳(CO)浓度的上升以及全球地表温度的相应升高,促使人们在设计以CO为原料的催化路线方面展开了大量研究工作。其中首要的是将CO加氢制甲醇,甲醇是一种关键的大宗商品化学中间体、一种储氢分子,也是未来无法实现电气化的运输部门可能使用的燃料。钯/氧化锌(Pd/ZnO)已被确定为该反应的一种有效催化剂候选物,但尚未有人尝试从根本上了解这种催化剂的工作原理,更重要的是,尚未建立CO加氢催化剂的具体设计标准。在此,我们表明,无论此处使用何种不同的合成程序和氧化锌类型,Pd/ZnO催化剂都具有相同的金属颗粒组成。我们证明,所有这些Pd/ZnO催化剂都呈现相同的活性趋势。在所有情况下,都会生成β-PdZn 1:1合金并主导催化作用。转化率和选择性之间的关系以及它们在6-80毫克范围内随氧化锌表面积的微小变化进一步支持了这一结论。若不与锌合金化,钯是一种逆水煤气变换催化剂,当负载在氧化铝和二氧化硅上时,其将CO转化为甲醇的活性远低于负载在氧化锌上时。我们的方法适用于发现和设计用于CO加氢的改进催化剂,并将有助于未来的催化剂发现。