Burwell Tom, Thangamuthu Madasamy, Aliev Gazi N, Ghaderzadeh Sadegh, Kohlrausch Emerson C, Chen Yifan, Theis Wolfgang, Norman Luke T, Fernandes Jesum Alves, Besley Elena, Licence Pete, Khlobystov Andrei N
School of Chemistry, University of Nottingham, Nottingham, UK.
School of Physics & Astronomy, University of Birmingham, Birmingham, UK.
Commun Chem. 2024 Jun 20;7(1):140. doi: 10.1038/s42004-024-01218-y.
A key strategy for minimizing our reliance on precious metals is to increase the fraction of surface atoms and improve the metal-support interface. In this work, we employ a solvent/ligand/counterion-free method to deposit copper in the atomic form directly onto a nanotextured surface of graphitized carbon nanofibers (GNFs). Our results demonstrate that under these conditions, copper atoms coalesce into nanoparticles securely anchored to the graphitic step edges, limiting their growth to 2-5 nm. The resultant hybrid Cu/GNF material displays high selectivity in the CO reduction reaction (CORR) for formate production with a faradaic efficiency of ~94% at -0.38 V vs RHE and a high turnover frequency of 2.78 × 10h. The Cu nanoparticles adhered to the graphitic step edges significantly enhance electron transfer to CO. Long-term CORR tests coupled with atomic-scale elucidation of changes in Cu/GNF reveal nanoparticles coarsening, and a simultaneous increase in the fraction of single Cu atoms. These changes in the catalyst structure make the onset of the CO reduction potential more negative, leading to less formate production at -0.38 V vs RHE, correlating with a less efficient competition of CO with HO for adsorption on single Cu atoms on the graphitic surfaces, revealed by density functional theory calculations.
减少我们对贵金属依赖的一个关键策略是增加表面原子的比例并改善金属-载体界面。在这项工作中,我们采用一种无溶剂/无配体/无抗衡离子的方法,将原子形式的铜直接沉积到石墨化碳纳米纤维(GNFs)的纳米纹理表面上。我们的结果表明,在这些条件下,铜原子聚结成牢固锚定在石墨台阶边缘的纳米颗粒,将它们的生长限制在2-5纳米。所得的Cu/GNF混合材料在CO还原反应(CORR)中对甲酸盐生成具有高选择性,在相对于可逆氢电极(RHE)为-0.38 V时法拉第效率约为94%,周转频率高达2.78×10/h。附着在石墨台阶边缘的铜纳米颗粒显著增强了向CO的电子转移。长期的CORR测试以及对Cu/GNF变化的原子尺度阐释表明纳米颗粒粗化,同时单个铜原子的比例增加。催化剂结构的这些变化使得CO还原电位的起始点变得更负,导致在相对于RHE为-0.38 V时甲酸盐生成减少,这与密度泛函理论计算所揭示的CO与H₂O在石墨表面单个铜原子上吸附竞争效率降低相关。