14,15-环氧二十碳三烯酸通过调节线粒体自噬SIRT1/FOXO3a信号通路和TSPO蛋白来预防葡萄糖剥夺和再灌注诱导的脑微血管内皮细胞损伤
14,15-Epoxyeicosatrienoic Acid Protect Against Glucose Deprivation and Reperfusion-Induced Cerebral Microvascular Endothelial Cells Injury by Modulating Mitochondrial Autophagy SIRT1/FOXO3a Signaling Pathway and TSPO Protein.
作者信息
Qu Youyang, Cao Jinlu, Wang Di, Wang Shu, Li Yujie, Zhu Yulan
机构信息
Department of Neurology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China.
出版信息
Front Cell Neurosci. 2022 Apr 26;16:888836. doi: 10.3389/fncel.2022.888836. eCollection 2022.
Neurovascular system plays a vital role in controlling the blood flow into brain parenchymal tissues. Additionally, it also facilitates the metabolism in neuronal biological activities. Cerebral microvascular endothelial cells (MECs) are involved in mediating progression of the diseases related to cerebral vessels, including stroke. Arachidonic acid can be transformed into epoxyeicosatrienoic acids (EETs) under the catalysis by cytochrome P450 epoxygenase. We have reported that EETs could protect neuronal function. In our research, the further role of 14,15-EET in the protective effects of cerebral MECs and the potential mechanisms involved in oxygen glucose deprivation and reperfusion (OGD/R) were elucidated. In our study, we intervened the SIRT1/FOXO3a pathway and established a TSPO knock down model by using RNA interference technique to explore the cytoprotective role of 14,15-EET in OGD/R injury. Cerebral MECs viability was remarkably reduced after OGD/R treatment, however, 14,15-EET could reverse this effect. To further confirm whether 14,15-EET was mediated by SIRT1/FOXO3a signaling pathway and translocator protein (TSPO) protein, we also detected autophagy-related proteins, mitochondrial membrane potential, apoptosis indicators, oxygen free radicals, etc. It was found that 14,15-EET could regulate the mitophagy induced by OGD/R. SIRT1/FOXO3a signaling pathway and TSPO regulation were related to the protective role of 14,15-EET in cerebral MECs. Moreover, we also explored the potential relationship between SIRT1/FOXO3a signaling pathway and TSPO protein. Our study revealed the protective role and the potential mechanisms of 14,15-EET in cerebral MECs under OGD/R condition.
神经血管系统在控制进入脑实质组织的血流中起着至关重要的作用。此外,它还促进神经元生物活动中的新陈代谢。脑微血管内皮细胞(MECs)参与介导与脑血管相关疾病的进展,包括中风。花生四烯酸在细胞色素P450环氧合酶的催化下可转化为环氧二十碳三烯酸(EETs)。我们已报道EETs可保护神经元功能。在我们的研究中,阐明了14,15-EET在脑MECs保护作用中的进一步作用以及氧糖剥夺和再灌注(OGD/R)所涉及的潜在机制。在我们的研究中,我们干预了SIRT1/FOXO3a通路,并使用RNA干扰技术建立了TSPO敲低模型,以探讨14,15-EET在OGD/R损伤中的细胞保护作用。OGD/R处理后,脑MECs活力显著降低,然而,14,15-EET可逆转这种作用。为了进一步证实14,15-EET是否由SIRT1/FOXO3a信号通路和转位蛋白(TSPO)蛋白介导,我们还检测了自噬相关蛋白、线粒体膜电位、凋亡指标、氧自由基等。发现14,15-EET可调节OGD/R诱导的线粒体自噬。SIRT1/FOXO3a信号通路和TSPO调节与14,15-EET在脑MECs中的保护作用有关。此外,我们还探讨了SIRT1/FOXO3a信号通路与TSPO蛋白之间的潜在关系。我们 的研究揭示了14,15-EET在OGD/R条件下对脑MECs的保护作用及其潜在机制。
相似文献
Biochem Biophys Res Commun. 2014-6-12
引用本文的文献
Curr Opin Physiol. 2022-12
本文引用的文献
Autophagy. 2021-2
J Mol Neurosci. 2019-12-26
Oxid Med Cell Longev. 2019-5-12