Suppr超能文献

基于连接组学的预测:丈夫在处理配偶互动时的婚姻质量。

Connectome-based prediction of marital quality in husbands' processing of spousal interactions.

机构信息

Institute of Developmental Psychology, Beijing Normal University, Beijing 100875, China.

State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing 100875, China.

出版信息

Soc Cogn Affect Neurosci. 2022 Dec 1;17(12):1055-1067. doi: 10.1093/scan/nsac034.

Abstract

Marital quality may decrease during the early years of marriage. Establishing models predicting individualized marital quality may help develop timely and effective interventions to maintain or improve marital quality. Given that marital interactions have an important impact on marital well-being cross-sectionally and prospectively, neural responses during marital interactions may provide insight into neural bases underlying marital well-being. The current study applies connectome-based predictive modeling, a recently developed machine-learning approach, to functional magnetic resonance imaging (fMRI) data from both partners of 25 early-stage Chinese couples to examine whether an individual's unique pattern of brain functional connectivity (FC) when responding to spousal interactive behaviors can reliably predict their own and their partners' marital quality after 13 months. Results revealed that husbands' FC involving multiple large networks, when responding to their spousal interactive behaviors, significantly predicted their own and their wives' marital quality, and this predictability showed gender specificity. Brain connectivity patterns responding to general emotional stimuli and during the resting state were not significantly predictive. This study demonstrates that husbands' differences in large-scale neural networks during marital interactions may contribute to their variability in marital quality and highlights gender-related differences. The findings lay a foundation for identifying reliable neuroimaging biomarkers for developing interventions for marital quality early in marriages.

摘要

婚姻质量可能会在婚姻的早期阶段下降。建立预测个体化婚姻质量的模型可能有助于及时有效地实施干预措施,以维持或改善婚姻质量。鉴于婚姻互动对婚姻幸福感具有重要的横向和前瞻性影响,婚姻互动期间的神经反应可能为婚姻幸福感的神经基础提供见解。本研究应用基于连接组的预测模型,这是一种新开发的机器学习方法,对 25 对处于早期阶段的中国夫妇双方的功能性磁共振成像 (fMRI) 数据进行分析,以检验当个体对配偶的互动行为做出反应时,其大脑功能连接 (FC) 的独特模式是否可以可靠地预测他们自己和配偶在 13 个月后的婚姻质量。结果表明,丈夫在回应配偶互动行为时涉及多个大网络的 FC 显著预测了他们自己和妻子的婚姻质量,并且这种可预测性具有性别特异性。对一般情绪刺激的反应和静息状态的大脑连通性模式没有显著的预测能力。本研究表明,丈夫在婚姻互动期间大脑中较大网络的差异可能导致他们的婚姻质量存在差异,并强调了性别差异。这些发现为识别可靠的神经影像学生物标志物,以在婚姻早期阶段开发婚姻质量干预措施奠定了基础。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8e97/9714425/67a520b76ea4/nsac034f1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验