Cross Richard, Matzke Marianne, Spurgeon Dave, Diez María, Andres Veronica Gonzalez, Galvez Elena Cerro, Esponda Maria Fernanda, Belinga-Desaunay-Nault Marie-France, Lynch Iseult, Jeliazkova Nina, Svendsen Claus
UK Centre for Ecology and Hydrology, Wallingford, United Kingdom.
UK Centre for Ecology and Hydrology, Wallingford, United Kingdom.
NanoImpact. 2022 Apr;26:100395. doi: 10.1016/j.impact.2022.100395. Epub 2022 Mar 17.
A substance may have one or more nanoforms, defined for regulatory purposes under EU chemicals legislation REACH based on differences in physicochemical properties such as size, shape, specific surface area and surface chemistry including coatings. To reduce the burden of testing each unique nanoform for the environmental risk assessment of nanomaterials, grouping approaches allow simultaneous assessment of multiple nanoforms. Nanoforms with initially different intrinsic properties, could still be considered similar if their environmental fate and effects can be demonstrated to be similar. One hypothesis to group nanoforms with different organic surface modifications is to use parameters linked to biodegradation of the organic surface. The hypothesis contends that nanoforms with a similar core chemistry, but different organic surface treatments may be grouped, if the surface treatment is likely to be lost through biodegradation rapidly upon entering an environmental compartment, such that it no longer modulates fate, exposure and toxicity of the nanoform. To implement grouping according to surface treatment biodegradability, a robust approach to measure the breakdown of particle surface treatments is needed. We present a tiered testing strategy to assess the biodegradation of organic surface treatments used with nanomaterials that can be implemented as part of an Integrated Approach to Testing and Assessment (IATA) for grouping based on surface treatment stability. The tiered approach consists of an initial pre-screening MT2 colorimetric carbon substrate utilisation assay, to provide a rapid assessment of coating degradation, and a second tier of testing using OECD Test Guideline 301F for assessing organic chemical biodegradability. Six common surface treatment substances are assessed using the tiered testing strategy to refine rules for escalating between tiers. Similarity assessment using absolute Euclidean distances and x-fold difference concluded that the Tier 1 assessment can be used as conservative binary screening for biodegradability (no false positive results in Tier 1), whilst for substances showing intermediate biodegradation (10-60% in OECD 301F, Tier 2), similarity assessments can be informative for grouping surface treatments not considered readily biodegradable. Further validation using higher tier tests (e.g., mesocosms) is needed to define acceptable limits of similarity between intermediately biodegradable substances, where differences in biodegradability of the surface coating lead to negligible differences in fate, behaviour and toxicity of the nanoforms, and this is critically discussed.
一种物质可能具有一种或多种纳米形态,根据欧盟化学品法规《化学品注册、评估、授权和限制》(REACH),基于尺寸、形状、比表面积和表面化学(包括涂层)等物理化学性质的差异,为监管目的对其进行定义。为减轻对每种独特纳米形态进行纳米材料环境风险评估测试的负担,分组方法允许同时评估多种纳米形态。如果能证明具有不同初始固有特性的纳米形态在环境归宿和影响方面相似,那么它们仍可被视为相似。一种对具有不同有机表面修饰的纳米形态进行分组的假设是使用与有机表面生物降解相关的参数。该假设认为,如果表面处理在进入环境隔室后可能通过生物降解迅速消失,以至于不再调节纳米形态的归宿、暴露和毒性,那么具有相似核心化学但不同有机表面处理的纳米形态可能可以分组。为了根据表面处理生物降解性进行分组,需要一种可靠的方法来测量颗粒表面处理的分解情况。我们提出了一种分层测试策略,以评估用于纳米材料的有机表面处理的生物降解性,该策略可作为基于表面处理稳定性进行分组的综合测试与评估方法(IATA)的一部分来实施。分层方法包括初始的预筛选MT2比色法碳底物利用试验,以快速评估涂层降解情况,以及第二层测试,使用经合组织测试指南301F评估有机化学品的生物降解性。使用分层测试策略对六种常见的表面处理物质进行评估,以完善各层之间升级的规则。使用绝对欧几里得距离和x倍差异进行相似性评估得出结论,第一层评估可作为生物降解性的保守二元筛选(第一层无假阳性结果),而对于显示中等生物降解性的物质(经合组织301F中为10 - 60%,第二层),相似性评估对于对不被认为易于生物降解的表面处理进行分组可能具有参考价值。需要使用更高层次的测试(如中宇宙试验)进行进一步验证,以确定中等生物降解性物质之间可接受的相似性限度,其中表面涂层生物降解性的差异导致纳米形态在归宿、行为和毒性方面的差异可忽略不计,对此进行了批判性讨论。