Suppr超能文献

如何为危害评估对纳米形式进行分组提供依据?量化相似性的概念和工具。

How can we justify grouping of nanoforms for hazard assessment? Concepts and tools to quantify similarity.

机构信息

Ideaconsult Ltd, Sofia, Bulgaria.

National Institute for Public Health and the Environment (RIVM), Bilthoven, the Netherlands.

出版信息

NanoImpact. 2022 Jan;25:100366. doi: 10.1016/j.impact.2021.100366. Epub 2021 Nov 20.

Abstract

The risk of each nanoform (NF) of the same substance cannot be assumed to be the same, as they may vary in their physicochemical characteristics, exposure and hazard. However, neither can we justify a need for more animal testing and resources to test every NF individually. To reduce the need to test all NFs, (regulatory) information requirements may be fulfilled by grouping approaches. For such grouping to be acceptable, it is important to demonstrate similarities in physicochemical properties, toxicokinetic behaviour, and (eco)toxicological behaviour. The GRACIOUS Framework supports the grouping of NFs, by identifying suitable grouping hypotheses that describe the key similarities between different NFs. The Framework then supports the user to gather the evidence required to test these hypotheses and to subsequently assess the similarity of the NFs within the proposed group. The evidence needed to support a hypothesis is gathered by an Integrated Approach to Testing and Assessment (IATA), designed as decision trees constructed of decision nodes. Each decision node asks the questions and provides the methods needed to obtain the most relevant information. This White paper outlines existing and novel methods to assess similarity of the data generated for each decision node, either via a pairwise analysis conducted property-by-property, or by assessing multiple decision nodes simultaneously via a multidimensional analysis. For the pairwise comparison conducted property-by-property we included in this White paper: The x-fold, Bayesian and Arsinh-OWA distance algorithms performed comparably in the scoring of similarity between NF pairs. The Euclidean distance was also useful, but only with proper data transformation. The x-fold method does not standardize data, and thus produces skewed histograms, but has the advantage that it can be implemented without programming knowhow. A range of multidimensional evaluations, using for example dendrogram clustering approaches, were also investigated. Multidimensional distance metrics were demonstrated to be difficult to use in a regulatory context, but from a scientific perspective were found to offer unexpected insights into the overall similarity of very different materials. In conclusion, for regulatory purposes, a property-by-property evaluation of the data matrix is recommended to substantiate grouping, while the multidimensional approaches are considered to be tools of discovery rather than regulatory methods.

摘要

每种相同物质的纳米形式(NF)的风险不能假定是相同的,因为它们在物理化学特性、暴露和危害方面可能有所不同。然而,我们也不能证明需要更多的动物测试和资源来单独测试每种 NF。为了减少测试所有 NF 的需求,可以通过分组方法满足(监管)信息要求。为了使分组方法具有可接受性,重要的是要证明物理化学性质、毒代动力学行为和(生态)毒理学行为方面的相似性。GRACIOUS 框架通过确定合适的分组假设来支持 NF 的分组,这些假设描述了不同 NF 之间的关键相似性。然后,该框架支持用户收集测试这些假设所需的证据,并随后评估拟议组内 NF 的相似性。支持假设所需的证据是通过综合测试和评估方法(IATA)收集的,该方法设计为由决策节点组成的决策树。每个决策节点都会提出问题并提供获得最相关信息所需的方法。本白皮书概述了现有的和新颖的方法,以评估为每个决策节点生成的数据的相似性,要么通过逐个属性进行的成对分析,要么通过同时评估多个决策节点进行多维分析。对于逐个属性进行的成对比较,我们在本白皮书中包括了:x 倍、贝叶斯和 Arsinh-OWA 距离算法在 NF 对之间的相似性评分方面表现相当。欧几里得距离也很有用,但只有在适当的数据转换后才有用。x 倍方法不标准化数据,因此会产生偏斜的直方图,但它的优点是无需编程知识即可实现。还研究了一系列多维评估,例如使用聚类方法。多维距离度量在监管方面被证明难以使用,但从科学角度来看,它们被发现为非常不同材料的整体相似性提供了意想不到的见解。总之,对于监管目的,建议对数据矩阵进行逐个属性的评估,以证实分组,而多维方法被认为是发现工具而不是监管方法。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验