文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

探究碳与 MoS 催化剂相互作用对 CO 加氢制甲醇的影响。

Exploring the Effects of the Interaction of Carbon and MoS Catalyst on CO Hydrogenation to Methanol.

机构信息

National Center for International Research on Catalytic Technology, Key Laboratory of Chemical Engineering Process & Technology for High-Efficiency Conversion, College of Heilongjiang Province, School of Chemistry and Material Sciences, Heilongjiang University, Harbin 150080, China.

出版信息

Int J Mol Sci. 2022 May 7;23(9):5220. doi: 10.3390/ijms23095220.


DOI:10.3390/ijms23095220
PMID:35563618
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC9104557/
Abstract

Hydrogenation of CO to form methanol utilizing green hydrogen is a promising route to realizing carbon neutrality. However, the development of catalyst with high activity and selectivity to methanol from the CO hydrogenation is still a challenge due to the chemical inertness of CO and its characteristics of multi-path conversion. Herein, a series of highly active carbon-confining molybdenum sulfide (MoS@C) catalysts were prepared by the in-situ pyrolysis method. In comparison with the bulk MoS and MoS/C, the stronger interaction between MoS and the carbon layer was clearly generated. Under the optimized reaction conditions, MoS@C showed better catalytic performance and long-term stability. The MoS@C catalyst could sustain around 32.4% conversion of CO with 94.8% selectivity of MeOH for at least 150 h.

摘要

利用绿色氢气将 CO 加氢转化为甲醇是实现碳中和的一种很有前途的途径。然而,由于 CO 的化学惰性及其多路径转化的特点,开发具有高活性和甲醇选择性的 CO 加氢催化剂仍然是一个挑战。在此,通过原位热解法制备了一系列具有高活性的碳限域的硫化钼(MoS@C)催化剂。与体相 MoS 和 MoS/C 相比,MoS 与碳层之间的相互作用明显增强。在优化的反应条件下,MoS@C 表现出更好的催化性能和长期稳定性。MoS@C 催化剂在至少 150 h 的时间内可以维持约 32.4%的 CO 转化率和 94.8%的甲醇选择性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/eafc/9104557/a0a64fdc3b72/ijms-23-05220-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/eafc/9104557/9fc269a3bf43/ijms-23-05220-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/eafc/9104557/a656a6733619/ijms-23-05220-g002a.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/eafc/9104557/94c4d903ae01/ijms-23-05220-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/eafc/9104557/e9f235bfc2ba/ijms-23-05220-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/eafc/9104557/fcc8d3c7d41d/ijms-23-05220-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/eafc/9104557/5322a8828111/ijms-23-05220-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/eafc/9104557/ecfe7d035365/ijms-23-05220-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/eafc/9104557/a0a64fdc3b72/ijms-23-05220-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/eafc/9104557/9fc269a3bf43/ijms-23-05220-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/eafc/9104557/a656a6733619/ijms-23-05220-g002a.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/eafc/9104557/94c4d903ae01/ijms-23-05220-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/eafc/9104557/e9f235bfc2ba/ijms-23-05220-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/eafc/9104557/fcc8d3c7d41d/ijms-23-05220-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/eafc/9104557/5322a8828111/ijms-23-05220-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/eafc/9104557/ecfe7d035365/ijms-23-05220-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/eafc/9104557/a0a64fdc3b72/ijms-23-05220-g008.jpg

相似文献

[1]
Exploring the Effects of the Interaction of Carbon and MoS Catalyst on CO Hydrogenation to Methanol.

Int J Mol Sci. 2022-5-7

[2]
Performance Exploration of Ni-Doped MoS in CO Hydrogenation to Methanol.

Molecules. 2023-8-1

[3]
Mn-promoted MoS catalysts for CO hydrogenation: enhanced methanol selectivity due to MoS/MnO interfaces.

Catal Sci Technol. 2024-2-2

[4]
In Situ Carbon-Confined MoSe Catalyst with Heterojunction for Highly Selective CO Hydrogenation to Methanol.

Molecules. 2024-5-8

[5]
PdCu supported on dendritic mesoporous CeZrO as superior catalysts to boost CO hydrogenation to methanol.

J Colloid Interface Sci. 2022-4

[6]
Preparation of catalyst for CO hydrogenation reaction based on the idea of element sharing and preliminary exploration of catalytic mechanism.

Environ Sci Pollut Res Int. 2024-7

[7]
Heterogeneous Catalytic Systems for Carbon Dioxide Hydrogenation to Value-Added Chemicals.

Chempluschem. 2023-7

[8]
Boosting CO Hydrogenation to Formate over Edge-Sulfur Vacancies of Molybdenum Disulfide.

Angew Chem Int Ed Engl. 2023-11-6

[9]
Strained few-layer MoS with atomic copper and selectively exposed in-plane sulfur vacancies for CO hydrogenation to methanol.

Nat Commun. 2023-9-21

[10]
Effect of reduction pretreatment on the structure and catalytic performance of Ir-InO catalysts for CO hydrogenation to methanol.

J Environ Sci (China). 2024-6

本文引用的文献

[1]
Highlights and challenges in the selective reduction of carbon dioxide to methanol.

Nat Rev Chem. 2021-8

[2]
Towards the development of the emerging process of CO heterogenous hydrogenation into high-value unsaturated heavy hydrocarbons.

Chem Soc Rev. 2021-10-4

[3]
Synthesis of C Chemicals from CO and H via C-C Bond Formation.

Acc Chem Res. 2021-5-18

[4]
Homogeneous and heterogeneous catalysts for hydrogenation of CO to methanol under mild conditions.

Chem Soc Rev. 2021-4-7

[5]
Hydrogenation of Carbon Dioxide to Methanol over Non-Cu-based Heterogeneous Catalysts.

ChemSusChem. 2020-12-7

[6]
Surface Iron Species in Palladium-Iron Intermetallic Nanocrystals that Promote and Stabilize CO Methanation.

Angew Chem Int Ed Engl. 2020-8-17

[7]
Recent Advances in Carbon Dioxide Hydrogenation to Methanol via Heterogeneous Catalysis.

Chem Rev. 2020-8-12

[8]
Single-Atom Vacancy Defect to Trigger High-Efficiency Hydrogen Evolution of MoS.

J Am Chem Soc. 2020-3-4

[9]
Insights into Interfacial Synergistic Catalysis over Ni@TiO Catalyst toward Water-Gas Shift Reaction.

J Am Chem Soc. 2018-9-12

[10]
Synergetic interaction between neighbouring platinum monomers in CO hydrogenation.

Nat Nanotechnol. 2018-5

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索