Suppr超能文献

含原子铜且具有选择性暴露的面内硫空位的应变少层二硫化钼用于一氧化碳加氢制甲醇。

Strained few-layer MoS with atomic copper and selectively exposed in-plane sulfur vacancies for CO hydrogenation to methanol.

作者信息

Zhou Shenghui, Ma Wenrui, Anjum Uzma, Kosari Mohammadreza, Xi Shibo, Kozlov Sergey M, Zeng Hua Chun

机构信息

Department of Chemical and Biomolecular Engineering, College of Design and Engineering, National University of Singapore, Singapore, 119260, Singapore.

The Cambridge Centre for Advanced Research and Education in Singapore, 1 CREATE Way, Singapore, 138602, Singapore.

出版信息

Nat Commun. 2023 Sep 21;14(1):5872. doi: 10.1038/s41467-023-41362-y.

Abstract

In-plane sulfur vacancies (Sv) in molybdenum disulfide (MoS) were newly unveiled for CO hydrogenation to methanol, whereas edge Sv were found to facilitate methane formation. Thus, selective exposure and activation of basal plane is crucial for methanol synthesis. Here, we report a mesoporous silica-encapsulated MoS catalysts with fullerene-like structure and atomic copper (Cu/MoS@SiO). The main approach is based on a physically constrained topologic conversion of molybdenum dioxide (MoO) to MoS within silica. The spherical curvature enables the generation of strain and Sv in inert basal plane. More importantly, fullerene-like structure of few-layer MoS can selectively expose in-plane Sv and reduce the exposure of edge Sv. After promotion by atomic copper, the resultant Cu/MoS@SiO exhibits stable specific methanol yield of 6.11 mol mol h with methanol selectivity of 72.5% at 260 °C, much superior to its counterparts lacking the fullerene-like structure and copper decoration. The reaction mechanism and promoting role of copper are investigated by in-situ DRIFTS and in-situ XAS. Theoretical calculations demonstrate that the compressive strain facilitates Sv formation and CO hydrogenation, while tensile strain accelerates the regeneration of active sites, rationalizing the critical role of strain.

摘要

二硫化钼(MoS₂)中平面内的硫空位(Sv)在CO加氢制甲醇反应中被首次发现,而边缘Sv则被发现促进甲烷生成。因此,选择性暴露和活化基面对于甲醇合成至关重要。在此,我们报道了一种具有类富勒烯结构和原子铜的介孔二氧化硅封装的MoS₂催化剂(Cu/MoS₂@SiO₂)。主要方法基于二氧化硅内二氧化钼(MoO₂)到MoS₂的物理受限拓扑转化。球形曲率能够在惰性基面中产生应变和Sv。更重要的是,少层MoS₂的类富勒烯结构可以选择性地暴露平面内Sv并减少边缘Sv的暴露。经原子铜促进后,所得的Cu/MoS₂@SiO₂在260℃下表现出稳定的甲醇比产率为6.11 mol mol⁻¹ h⁻¹,甲醇选择性为72.5%,远优于缺乏类富勒烯结构和铜修饰的同类催化剂。通过原位漫反射红外傅里叶变换光谱(DRIFTS)和原位X射线吸收光谱(XAS)研究了铜的反应机理和促进作用。理论计算表明,压缩应变促进Sv形成和CO加氢,而拉伸应变加速活性位点的再生,从而解释了应变的关键作用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c50d/10514200/9742ed50f88d/41467_2023_41362_Fig1_HTML.jpg

相似文献

2
Boosting CO Hydrogenation to Methanol over Monolayer MoS Nanotubes by Creating More Strained Basal Planes.
J Am Chem Soc. 2024 Apr 10;146(14):10032-10043. doi: 10.1021/jacs.4c00781. Epub 2024 Apr 2.
3
Performance Exploration of Ni-Doped MoS in CO Hydrogenation to Methanol.
Molecules. 2023 Aug 1;28(15):5796. doi: 10.3390/molecules28155796.
4
Mn-promoted MoS catalysts for CO hydrogenation: enhanced methanol selectivity due to MoS/MnO interfaces.
Catal Sci Technol. 2024 Feb 2;14(5):1138-1147. doi: 10.1039/d3cy01711g. eCollection 2024 Mar 5.
6
Boosting CO Hydrogenation to Formate over Edge-Sulfur Vacancies of Molybdenum Disulfide.
Angew Chem Int Ed Engl. 2023 Nov 6;62(45):e202307086. doi: 10.1002/anie.202307086. Epub 2023 Aug 4.
8
Activation of the MoS Basal Plane to Enhance CO Hydrogenation to Methane Activity Through Increasing S Vacancies.
ACS Appl Mater Interfaces. 2022 Feb 16;14(6):7741-7755. doi: 10.1021/acsami.1c18291. Epub 2022 Feb 3.
10
Kinetic Study of Hydrogen Evolution Reaction over Strained MoS2 with Sulfur Vacancies Using Scanning Electrochemical Microscopy.
J Am Chem Soc. 2016 Apr 20;138(15):5123-9. doi: 10.1021/jacs.6b01377. Epub 2016 Apr 7.

引用本文的文献

3
Application of metal-organic frameworks and their derivates for thermal-catalytic C1 molecules conversion.
iScience. 2024 Apr 2;27(5):109656. doi: 10.1016/j.isci.2024.109656. eCollection 2024 May 17.
4
Mn-promoted MoS catalysts for CO hydrogenation: enhanced methanol selectivity due to MoS/MnO interfaces.
Catal Sci Technol. 2024 Feb 2;14(5):1138-1147. doi: 10.1039/d3cy01711g. eCollection 2024 Mar 5.

本文引用的文献

1
Ferromagnetic single-atom spin catalyst for boosting water splitting.
Nat Nanotechnol. 2023 Jul;18(7):763-771. doi: 10.1038/s41565-023-01407-1. Epub 2023 May 25.
2
CO Hydrogenation over Copper/ZnO Single-Atom Catalysts: Water-Promoted Transient Synthesis of Methanol.
Angew Chem Int Ed Engl. 2022 Nov 25;61(48):e202213024. doi: 10.1002/anie.202213024. Epub 2022 Oct 27.
3
Methanol Synthesis from CO/CO Mixture on Cu-Zn Catalysts from Microkinetics-Guided Machine Learning Pathway Search.
J Am Chem Soc. 2022 Jul 27;144(29):13401-13414. doi: 10.1021/jacs.2c06044. Epub 2022 Jul 18.
4
Elucidating CO Hydrogenation over In O Nanoparticles using Operando UV/Vis and Impedance Spectroscopies.
Angew Chem Int Ed Engl. 2022 Sep 26;61(39):e202209388. doi: 10.1002/anie.202209388. Epub 2022 Aug 18.
5
Ultraefficient Electrocatalytic Hydrogen Evolution from Strain-Engineered, Multilayer MoS.
Nano Lett. 2022 Jul 27;22(14):5742-5750. doi: 10.1021/acs.nanolett.2c00938. Epub 2022 Jun 6.
6
Photoexcitation Dynamics and Long-Lived Excitons in Strain-Engineered Transition Metal Dichalcogenides.
Adv Mater. 2022 Jun;34(23):e2110568. doi: 10.1002/adma.202110568. Epub 2022 Apr 30.
8
Mechanistic Study of Carbon Dioxide Hydrogenation over Pd/ZnO-Based Catalysts: The Role of Palladium-Zinc Alloy in Selective Methanol Synthesis.
Angew Chem Int Ed Engl. 2021 Jul 26;60(31):17053-17059. doi: 10.1002/anie.202103087. Epub 2021 Jun 24.
9
Highly Strain-Tunable Interlayer Excitons in MoS/WSe Heterobilayers.
Nano Lett. 2021 May 12;21(9):3956-3964. doi: 10.1021/acs.nanolett.1c00724. Epub 2021 Apr 29.
10
Homogeneous and heterogeneous catalysts for hydrogenation of CO to methanol under mild conditions.
Chem Soc Rev. 2021 Apr 7;50(7):4259-4298. doi: 10.1039/d0cs01331e. Epub 2021 Mar 9.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验