Suppr超能文献

基于氧化锌镁窗口层通过刮刀涂布法制备水相碲化镉量子点太阳能器件的研究

Study on the Aqueous CdTe Quantum Dots Solar Device Deposited by Blade Coating on Magnesium Zinc Oxide Window Layer.

作者信息

Lv Bin, Liu Xia, Yan Bo, Deng Juan, Gao Fan, Chen Naibo, Wu Xiaoshan

机构信息

Collaborative Innovation Center for Bio-Med Physics Information Technology of ZJUT, Zhejiang University of Technology, Hangzhou 310023, China.

Nantong-Nanjing University Institute of Materials Engineering & Technology, Nantong 226019, China.

出版信息

Nanomaterials (Basel). 2022 Apr 30;12(9):1523. doi: 10.3390/nano12091523.

Abstract

Aqueous CdTe quantum dots solar cells have been successfully fabricated by the blade coating method on the magnesium zinc oxide (ZnMgO or ZMO) window layer. Compared with the ZMO mono-window layer, the ZMO/CdS bi-window layer can decrease the interface recombination effectively due to the lower lattice mismatch and fast interdiffusion between CdS and CdTe. Moreover, the high temperature annealing of the CdTe quantum dots absorbed layer passivates the grain boundary of the CdTe crystalline via the replacement reaction of tellurium with sulfur. Finally, the conversion efficiency of our aqueous CdTe quantum dots solar device is improved from 3.21% to 8.06% with the introduction of the CdS interlayer and high temperature CdCl annealing. Our aqueous CdTe quantum dots solar devices show a large open circuit voltage and fill factor which are comparable with the conventional devices that are fabricated with organic CdTe quantum dots. We believe that it is the spike-like conduction band alignment between the ZMO and CdTe absorbed layer that reduces the majority carrier concentration, leading to the decrease in interface recombination probability.

摘要

通过刮涂法在氧化镁锌(ZnMgO或ZMO)窗口层上成功制备了水相CdTe量子点太阳能电池。与ZMO单窗口层相比,ZMO/CdS双窗口层由于CdS和CdTe之间较低的晶格失配和快速的相互扩散,能够有效降低界面复合。此外,CdTe量子点吸收层的高温退火通过碲与硫的置换反应钝化了CdTe晶体的晶界。最后,通过引入CdS中间层和高温CdCl退火,我们的水相CdTe量子点太阳能器件的转换效率从3.21%提高到了8.06%。我们的水相CdTe量子点太阳能器件表现出与用有机CdTe量子点制备的传统器件相当的大开路电压和填充因子。我们认为,是ZMO和CdTe吸收层之间的尖峰状导带排列降低了多数载流子浓度,导致界面复合概率降低。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ed44/9099490/a7e28ed246db/nanomaterials-12-01523-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验