Suppr超能文献

组蛋白 H1 缺失通过破坏 3D 染色质结构驱动淋巴瘤。

Histone H1 loss drives lymphoma by disrupting 3D chromatin architecture.

机构信息

Division of Hematology and Medical Oncology, Sanford I. Weill Department of Medicine, Weill Cornell Medicine, New York, NY, USA.

Cell and Molecular Biology Graduate Program, Weill Cornell Medicine, New York, NY, USA.

出版信息

Nature. 2021 Jan;589(7841):299-305. doi: 10.1038/s41586-020-3017-y. Epub 2020 Dec 9.

Abstract

Linker histone H1 proteins bind to nucleosomes and facilitate chromatin compaction, although their biological functions are poorly understood. Mutations in the genes that encode H1 isoforms B-E (H1B, H1C, H1D and H1E; also known as H1-5, H1-2, H1-3 and H1-4, respectively) are highly recurrent in B cell lymphomas, but the pathogenic relevance of these mutations to cancer and the mechanisms that are involved are unknown. Here we show that lymphoma-associated H1 alleles are genetic driver mutations in lymphomas. Disruption of H1 function results in a profound architectural remodelling of the genome, which is characterized by large-scale yet focal shifts of chromatin from a compacted to a relaxed state. This decompaction drives distinct changes in epigenetic states, primarily owing to a gain of histone H3 dimethylation at lysine 36 (H3K36me2) and/or loss of repressive H3 trimethylation at lysine 27 (H3K27me3). These changes unlock the expression of stem cell genes that are normally silenced during early development. In mice, loss of H1c and H1e (also known as H1f2 and H1f4, respectively) conferred germinal centre B cells with enhanced fitness and self-renewal properties, ultimately leading to aggressive lymphomas with an increased repopulating potential. Collectively, our data indicate that H1 proteins are normally required to sequester early developmental genes into architecturally inaccessible genomic compartments. We also establish H1 as a bona fide tumour suppressor and show that mutations in H1 drive malignant transformation primarily through three-dimensional genome reorganization, which leads to epigenetic reprogramming and derepression of developmentally silenced genes.

摘要

连接组蛋白 H1 蛋白与核小体结合并促进染色质紧缩,但其生物学功能尚未完全了解。编码 H1 同工型 B-E(H1B、H1C、H1D 和 H1E;也分别称为 H1-5、H1-2、H1-3 和 H1-4)的基因中的突变在 B 细胞淋巴瘤中高度复发,但这些突变与癌症的发病相关性以及涉及的机制尚不清楚。在这里,我们表明淋巴瘤相关的 H1 等位基因是淋巴瘤中的遗传驱动突变。H1 功能的破坏导致基因组的结构重塑,其特征是染色质从致密状态到松弛状态的大规模但局部转移。这种去紧缩导致表观遗传状态的明显变化,主要是由于赖氨酸 36 上的组蛋白 H3 二甲基化(H3K36me2)和/或赖氨酸 27 上的抑制性 H3 三甲基化(H3K27me3)的丧失而获得。这些变化释放了在早期发育过程中通常沉默的干细胞基因的表达。在小鼠中,H1c 和 H1e(也分别称为 H1f2 和 H1f4)的缺失赋予生发中心 B 细胞更高的适应性和自我更新特性,最终导致具有更高再生潜力的侵袭性淋巴瘤。总的来说,我们的数据表明 H1 蛋白通常需要将早期发育基因隔离到结构上不可及的基因组隔室中。我们还将 H1 确立为真正的肿瘤抑制因子,并表明 H1 中的突变主要通过三维基因组重排驱动恶性转化,从而导致表观遗传重编程和发育沉默基因的去抑制。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3a54/7855728/970b9d8f6ca1/nihms-1636448-f0006.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验