Suppr超能文献

水深通过控制生态系统的转变和与磷结合的金属元素来决定磷的时空保留。

Water depth determines spatial and temporal phosphorus retention by controlling ecosystem transition and P-binding metal elements.

机构信息

State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, 8 Dayangfang, Beijing 100012, China; National Engineering Laboratory for Lake Pollution Control and Ecological Restoration, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; Institute of Water Environment Research, Chinese Research Academy of Environmental Sciences, Beijing 100012, China.

Kunming Institute of Eco-Environmental Sciences, Yunnan, Kunming, China.

出版信息

Water Res. 2022 Jul 1;219:118550. doi: 10.1016/j.watres.2022.118550. Epub 2022 May 4.

Abstract

Shallow lakes are more susceptible to eutrophication than deep lakes. The geochemical and biogeochemical mechanisms controlling the vulnerability to eutrophication for deep lakes and shallow lakes remain unknown. Therefore, we investigated the combined Phosphorus (P) retention mechanism with P fractions, water depth, distribution of P-binding metal elements, and macrophytes coverage in a degrading ecosystem of Erhai Lake. We concluded that different mechanisms control the P retention in deep-water areas and shallow-water areas. In shallow areas covered by macrophytes, the biogeochemical process manipulates the P retention by changing the total organic carbon (TOC), calcium (Ca) distributions and turbulence. In deep areas without macrophyte coverage, the aluminum (Al) and iron (Fe) distributions control the P retention by a physicochemical process. Manganese (Mn) was found to be a potential proxy in tracking the kinetic release and readsorb of redox-sensitive P (BD-P) in deep areas. The historical record and core sample indicate that the hydrological engineering induced water depth variation is a vital factor changing the ecosystem of Erhai Lake by forming a large area of intermediate area where macrophytes could only survive at low water level. The uplift of water level in the 1990s gradually changed the ecosystem of Erhai Lake from macrophyte-dominated to algal-macrophyte concomitant that reduced the accumulation of stable P fractions and their binding metals. Macrophytes were capable to preserve P in biomass in the macrophyte-dominated ecosystem, which released 150% and 72% of more labile organic P (NaOH25-nrP) and BD-P in the sediment after the deterioration than before, respectively. Therefore, water depth is a prerequisite to restoring the P preservation capacity of sediment and the macrophyte ecosystem. Further hydraulic engineering projects should consider the effect of water-level-variation-induced ecosystem transition.

摘要

浅水湖泊比深水湖泊更容易富营养化。控制深水湖和浅水湖富营养化脆弱性的地球化学和生物地球化学机制尚不清楚。因此,我们研究了在洱海退化生态系统中,磷(P)保留机制与 P 形态、水深、P 结合金属元素分布和大型植物覆盖之间的结合。我们得出的结论是,不同的机制控制了深水和浅水区域的磷保留。在有大型植物覆盖的浅水区域,生物地球化学过程通过改变总有机碳(TOC)、钙(Ca)分布和湍流来操纵磷的保留。在没有大型植物覆盖的深水区,铝(Al)和铁(Fe)分布通过物理化学过程控制磷的保留。锰(Mn)被发现是跟踪深水区氧化还原敏感磷(BD-P)动力学释放和再吸附的潜在示踪剂。历史记录和岩芯样本表明,水文工程引起的水深变化是通过形成大面积中间区域来改变洱海生态系统的重要因素,在低水位下大型植物只能在中间区域生存。上世纪 90 年代水位的上升逐渐将洱海的生态系统从以大型植物为主导转变为藻类-大型植物共生,从而减少了稳定 P 形态及其结合金属的积累。大型植物能够在以大型植物为主导的生态系统中以生物量的形式保存 P,在生态系统恶化后,沉积物中更不稳定的有机磷(NaOH25-nrP)和 BD-P 分别释放了 150%和 72%。因此,水深是恢复沉积物和大型植物生态系统磷保存能力的前提。进一步的水利工程应考虑水位变化引起的生态系统转变的影响。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验