Suppr超能文献

载铜-铈氧化钴硅纳米胶囊用于自供给双氧水类芬顿催化和协同抗菌治疗。

Cu-Ce oxide Co-loaded silicon nanocapsules for hydrogen peroxide self-supplied Fenton-like catalysis and synergistically antibacterial therapy.

机构信息

State Key Laboratory of Crystal Materials, School of Crystal Materials, Shandong University, Jinan, 250100, China.

School of Chemistry and Chemical Engineering, Shandong University, Jinan, 250100, China.

出版信息

Environ Res. 2022 Sep;212(Pt C):113444. doi: 10.1016/j.envres.2022.113444. Epub 2022 May 12.

Abstract

Antibacterial strategies based on reactive oxygen species (ROS) have opened up a new avenue for overcoming the great challenges of antibiotics topic including lack of broad-spectrum antibiotics and the emergence of super-resistant bacteria. Herein, we leveraged a strategy of constructing synergistic catalytic active sites to develop a simple yet efficient Fenton-like active nanocomposite, and investigated its catalysis mechanism and antibacterial performance thoroughly. This strategy provides a new direction for boosting the catalytic activity of nanocomposite catalysts for wide application. Specifically, by uniformly loading copper oxide and ceria onto the surface of silica nanocapsules (SiO NCs), we fabricated a bimetallic oxide nanocomposite CuCeO@SiO NC, which performed superior Fenton-like capability in a wide pH range without additional exogenetic hydrogen peroxide (HO). Such excellent catalytic activity was originated from the charge interaction between the two metal oxide components, where formation of Cu and oxygen vacancies (OVs) was mutually reinforcing, resulting in a synergistic effect to produce HO and catalyze the generation of •OH under the slight acid condition (pH = 6.0). In view of the outstanding Fenton-like activity, the CuCeO@SiO NC was employed in antimicrobial testing, which demonstrated exceptional high in vitro antimicrobial efficacy against both the S. aureus and E. coli in a neutral environment (pH = 7.4). The excellent performance of the bimetallic nanocomposite CuCeO@SiO NC, including its facile and mild preparation, high water-solubility and stability, superior catalytic and antimicrobial performances, manifests a promising broad-spectrum antibiotic that can be anticipated to deal with the contamination of the environment by bacteria.

摘要

基于活性氧(ROS)的抗菌策略为克服抗生素面临的巨大挑战开辟了新途径,包括缺乏广谱抗生素和超级耐药菌的出现。在此,我们利用构建协同催化活性位点的策略,开发了一种简单而高效的类 Fenton 活性纳米复合材料,并深入研究了其催化机制和抗菌性能。该策略为提高纳米复合材料催化剂的催化活性提供了新的方向,从而实现更广泛的应用。具体而言,通过将氧化铜和氧化铈均匀负载到硅纳米胶囊(SiO NCs)的表面上,我们制备了一种双金属氧化物纳米复合材料 CuCeO@SiO NC,其在很宽的 pH 范围内表现出优异的类 Fenton 性能,而无需额外的外源过氧化氢(HO)。这种优异的催化活性源于两种金属氧化物组分之间的电荷相互作用,其中两种金属氧化物组分的相互增强形成 Cu 和氧空位(OVs),从而产生协同效应,在弱酸条件(pH = 6.0)下产生 HO 并催化•OH 的生成。鉴于其出色的类 Fenton 活性,将 CuCeO@SiO NC 用于抗菌测试,结果表明其在中性环境(pH = 7.4)下对金黄色葡萄球菌和大肠杆菌均表现出异常高的体外抗菌功效。双金属纳米复合材料 CuCeO@SiO NC 的优异性能,包括其简便温和的制备方法、高水溶性和稳定性、优异的催化和抗菌性能,展示了一种有前途的广谱抗生素,有望用于处理环境中细菌的污染。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验