Université Paris-Saclay, CNRS, Institut de Chimie Physique UMR8000, 91405 Orsay, France.
J Chem Phys. 2022 May 14;156(18):184104. doi: 10.1063/5.0089415.
The exact factorization of the electron-nuclear wavefunction is applied to the study of photo-isomerization of a retinal chromophore model. We describe such an ultrafast nonadiabatic process by analyzing the time-dependent potentials of the theory and by mimicking nuclear dynamics with quantum and coupled trajectories. The time-dependent vector and scalar potentials are the signature of the exact factorization, as they guide nuclear dynamics by encoding the complete electronic dynamics and including excited-state effects. Analysis of the potentials is, thus, essential-when possible-to predict the time-dependent behavior of the system of interest. In this work, we employ the exact time-dependent potentials, available for the numerically exactly solvable model used here, to propagate quantum nuclear trajectories representing the isomerization reaction of the retinal chromophore. The quantum trajectories are the best possible trajectory-based description of the reaction when using the exact-factorization formalism and, thus, allow us to assess the performance of the coupled-trajectory, fully approximate schemes derived from the exact-factorization equations.
电子-核波函数的精确因子分解被应用于研究视黄醛生色团模型的光致异构化。我们通过分析理论的时变势能,并通过量子和耦合轨迹模拟核动力学,来描述这种超快的非绝热过程。时变向量和标量势是精确因子分解的特征,因为它们通过编码完整的电子动力学并包括激发态效应来指导核动力学。因此,分析势是预测感兴趣系统的时变行为的关键——在可能的情况下。在这项工作中,我们使用可用于此处使用的数值上可精确求解模型的精确时变势能来传播量子核轨迹,这些量子轨迹代表视黄醛生色团的异构化反应。当使用精确因子分解形式时,量子轨迹是反应的基于轨迹的最佳描述,因此允许我们评估从精确因子分解方程得出的耦合轨迹、完全近似方案的性能。