Center for Cardiovascular Research, John A. Burns School of Medicine, University of Hawaii at Manoa, Honolulu, HI 96813, United States of America; Department of Cell and Molecular Biology, John A. Burns School of Medicine, University of Hawaii at Manoa, Honolulu, HI 96813, United States of America.
Center for Cardiovascular Research, John A. Burns School of Medicine, University of Hawaii at Manoa, Honolulu, HI 96813, United States of America.
J Mol Cell Cardiol. 2022 Aug;169:84-95. doi: 10.1016/j.yjmcc.2022.05.003. Epub 2022 May 13.
Cardiac fibroblasts are the main non-myocyte population responsible for extracellular matrix (ECM) production. During perinatal development, fibroblast expansion coincides with the transition from hyperplastic to hypertrophic myocardial growth. Therefore, we investigated the consequences of fibroblast loss at the time of cardiomyocyte maturation by depleting fibroblasts in the perinatal mouse.
We evaluated the microenvironment of the perinatal heart in the absence of fibroblasts and the potential functional impact of fibroblast loss in regulation of cardiomyocyte cell cycle arrest and binucleation. Cre-mediated expression of diphtheria toxin A in PDGFRα expressing cells immediately after birth eliminated 70-80% of the cardiac fibroblasts. At postnatal day 5, hearts lacking fibroblasts appeared similar to controls with normal morphology and comparable numbers of endothelial and smooth muscle cells, despite a pronounced reduction in fibrillar collagen. Immunoblotting and proteomic analysis of control and fibroblast-deficient hearts identified differential abundance of several ECM proteins. In addition, fibroblast loss decreased tissue stiffness and resulted in increased cardiomyocyte mitotic index, DNA synthesis, and cytokinesis. Moreover, decellularized matrix from fibroblast-deficient hearts promoted cardiomyocyte DNA replication. While cardiac architecture was not overtly affected by fibroblast reduction, few pups survived past postnatal day 11, suggesting an overall requirement for PDGFRα expressing fibroblasts.
These studies demonstrate the key role of fibroblasts in matrix production and cardiomyocyte cross-talk during mouse perinatal heart maturation and revealed that fibroblast-derived ECM may modulate cardiomyocyte maturation in vivo. Neonatal depletion of fibroblasts demonstrated that although hearts can tolerate reduced ECM composition, fibroblast loss eventually leads to perinatal death as the approach simultaneously reduced fibroblast populations in other organs.
心肌成纤维细胞是负责细胞外基质(ECM)产生的主要非心肌细胞群体。在围产期发育过程中,成纤维细胞的扩增与心肌从增生到肥大的转变同时发生。因此,我们通过在围生期小鼠中耗尽成纤维细胞来研究心肌细胞成熟时成纤维细胞丢失的后果。
我们评估了缺乏成纤维细胞的围生期心脏的微环境,以及成纤维细胞丢失在调节心肌细胞细胞周期阻滞和双核化中的潜在功能影响。出生后立即在 PDGFRα 表达细胞中表达白喉毒素 A 的 Cre 介导表达消除了 70-80%的心脏成纤维细胞。在出生后第 5 天,缺乏成纤维细胞的心脏外观与对照组相似,具有正常的形态和可比数量的内皮和平滑肌细胞,尽管纤维胶原明显减少。对对照组和成纤维细胞缺陷型心脏的免疫印迹和蛋白质组学分析鉴定了几种 ECM 蛋白的差异丰度。此外,成纤维细胞缺失降低了组织硬度,导致心肌细胞有丝分裂指数、DNA 合成和胞质分裂增加。此外,成纤维细胞缺陷型心脏的脱细胞基质促进了心肌细胞的 DNA 复制。虽然心脏结构没有因成纤维细胞减少而明显受到影响,但很少有幼鼠能存活到出生后第 11 天以上,这表明 PDGFRα 表达的成纤维细胞存在整体需求。
这些研究表明成纤维细胞在基质产生和心肌细胞相互作用中起着关键作用,在围生期心脏成熟过程中,揭示了成纤维细胞衍生的 ECM 可能在体内调节心肌细胞成熟。新生期成纤维细胞耗竭表明,尽管心脏可以耐受 ECM 组成的减少,但成纤维细胞的丢失最终会导致围生期死亡,因为这种方法同时减少了其他器官中成纤维细胞的数量。