School of Physiology, Pharmacology and Neuroscience, University of Bristol, University Walk, Bristol BS8 1TD, UK.
Taub Institute for Research on Alzheimer's Disease & the Aging Brain, Columbia University, New York, NY, USA; Department of Pathology & Cell Biology, Columbia University, New York, NY, USA.
Neurobiol Dis. 2022 Aug;170:105752. doi: 10.1016/j.nbd.2022.105752. Epub 2022 May 13.
Alzheimer's disease (AD) is the most prevalent neurodegenerative disease placing a great burden on people living with it, carers and society. Yet, the underlying patho-mechanisms remain unknown and treatments limited. To better understand the molecular changes associated with AD, genome-wide association studies (GWAS) have identified hundreds of candidate genes linked to the disease, like the receptor tyrosine kinase EphA1. However, demonstration of whether and how these genes cause pathology is largely lacking. Here, utilising fly genetics, we generated the first Drosophila model of human wild-type and P460L mutant EphA1 and tested the effects of Eph/ephrin signalling on AD-relevant behaviour and neurophysiology. We show that EphA1 mis-expression did not cause neurodegeneration, shorten lifespan or affect memory but flies mis-expressing the wild-type or mutant receptor were hyper-aroused, had reduced sleep, a stronger circadian rhythm and increased clock neuron activity and excitability. Over-expression of endogenous fly Eph and RNAi-mediated knock-down of Eph and its ligand ephrin affected sleep architecture and neurophysiology. Eph over-expression led to stronger circadian morning anticipation while ephrin knock-down impaired memory. A dominant negative form of the GTPase Rho1, a potential intracellular effector of Eph, led to hyper-aroused flies, memory impairment, less anticipatory behaviour and neurophysiological changes. Our results demonstrate a role of Eph/ephrin signalling in a range of behaviours affected in AD. This presents a starting point for studies into the underlying mechanisms of AD including interactions with other AD-associated genes, like Rho1, Ankyrin, Tau and APP with the potential to identify new targets for treatment.
阿尔茨海默病(AD)是最常见的神经退行性疾病,给患者、护理人员和社会带来了巨大的负担。然而,其潜在的病理机制仍不清楚,治疗方法也有限。为了更好地了解与 AD 相关的分子变化,全基因组关联研究(GWAS)已经确定了数百个与该疾病相关的候选基因,如受体酪氨酸激酶 EphA1。然而,这些基因是否以及如何导致病理学的证明在很大程度上仍然缺乏。在这里,我们利用果蝇遗传学,首次构建了人类野生型和 P460L 突变 EphA1 的果蝇模型,并测试了 Eph/ephrin 信号对 AD 相关行为和神经生理学的影响。我们发现 EphA1 的异常表达不会导致神经退行性变、缩短寿命或影响记忆,但表达野生型或突变受体的果蝇表现出过度兴奋、睡眠减少、更强的昼夜节律以及时钟神经元活性和兴奋性增加。内源性果蝇 Eph 的过表达和 Eph 和其配体 ephrin 的 RNAi 敲低会影响睡眠结构和神经生理学。Eph 的过表达导致更强的昼夜节律性早晨预期,而 ephrin 的敲低则损害记忆。一种潜在的 Eph 细胞内效应物 GTPase Rho1 的显性负形式会导致过度兴奋的果蝇、记忆损伤、较少的预期行为和神经生理变化。我们的研究结果表明 Eph/ephrin 信号在一系列受 AD 影响的行为中发挥作用。这为研究 AD 的潜在机制提供了一个起点,包括与其他 AD 相关基因(如 Rho1、Ankyrin、Tau 和 APP)的相互作用,有可能确定新的治疗靶点。