Suppr超能文献

基于增强现实的药品名称识别的医学药物检测。

Medicine Drug Name Detection Based Object Recognition Using Augmented Reality.

机构信息

Velagapudi Ramakrishna Siddhartha Engineering College, Vijayawada, India.

Department of Mathematics and Computer Science, Brandon University, Brandon, MB, Canada.

出版信息

Front Public Health. 2022 Apr 29;10:881701. doi: 10.3389/fpubh.2022.881701. eCollection 2022.

Abstract

Augmented Reality (AR) is an innovation that empowers us in coordinating computerized data into the client's real-world space. It offers an advanced and progressive methodology for medicines, providing medication training. AR aids in surgery planning, and patient therapy discloses complex medical circumstances to patients and their family members. With accelerated upgrades in innovation, the ever-increasing number of medical records get accessible, which contain a lot of sensitive medical data, similar to medical substances and relations between them. To exploit the clinical texts in these data, it is important to separate significant data from these texts. Drugs, along with some kind of the fundamental clinical components, additionally should be perceived. Drug name recognition (DNR) tries to recognize drugs specified in unstructured clinical texts and order them into predefined classifications, which is utilized to deliver a connected 3D model inside the present reality client space. This work shows the utilization of AR to give an active and visual representation of data about medicines and their applications. The proposed method is a mobile application that uses a native camera and optical character recognition algorithm (OCR) to extract the text on the medicines. The extracted text is over and above processed using natural language processing (NLP) tools which are then used to identify the generic name and category of the drug using the dedicated DNR database. The database used for the system is scraped using various resources of medical studies and is named a medi-drug database from a development standpoint. 3D model prepared particularly for the drug is then presented in AR using ArCore. The results obtained are encouraging. The proposed method can detect the text with an average time of 0.005 s and can produce the visual representation of the output with an average time of 1.5 s.

摘要

增强现实(AR)是一项创新技术,它能够将计算机化的数据与客户的真实世界空间相协调。它为药物提供了一种先进且先进的方法,提供药物培训。AR 辅助手术计划,患者治疗向患者及其家属揭示复杂的医疗情况。随着创新的加速升级,越来越多的医疗记录变得可以访问,其中包含大量敏感的医疗数据,类似于药物及其之间的关系。为了利用这些数据中的临床文本,从这些文本中分离出重要数据非常重要。药物以及一些基本的临床成分也应该被识别出来。药物名称识别(DNR)试图识别非结构化临床文本中指定的药物,并将它们分类到预定义的类别中,以便在当前现实客户空间内提供相关的 3D 模型。这项工作展示了如何利用 AR 来提供关于药物及其应用的主动和可视化表示。所提出的方法是一种移动应用程序,它使用本机摄像头和光学字符识别算法(OCR)来提取药物上的文本。提取的文本将使用自然语言处理(NLP)工具进行进一步处理,然后使用专用的 DNR 数据库来识别药物的通用名称和类别。该系统使用的数据库是使用医学研究的各种资源进行刮取的,并从开发角度命名为 medi-drug 数据库。然后,使用 ArCore 在 AR 中呈现专门为药物准备的 3D 模型。所获得的结果令人鼓舞。所提出的方法可以以平均 0.005 秒的时间检测文本,并以平均 1.5 秒的时间生成输出的可视化表示。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2823/9102603/081d880b45e0/fpubh-10-881701-g0001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验