Suppr超能文献

经皮冠状动脉介入治疗后急性心肌梗死患者冠状动脉造影预测心室壁瘤形成的新分析

Novel Analysis of Coronary Angiography in Predicting the Formation of Ventricular Aneurysm in Patients With Acute Myocardial Infarction After Percutaneous Coronary Intervention.

作者信息

Yu Pujiao, Xi Peng, Tang Yu, Xu Jiahong, Liu Yang

机构信息

Department of Cardiology, Shanghai Tongji Hospital, Tongji University School of Medicine, Shanghai, China.

出版信息

Front Cardiovasc Med. 2022 Apr 28;9:880289. doi: 10.3389/fcvm.2022.880289. eCollection 2022.

Abstract

BACKGROUND

Ventricular aneurysm (VA) is a serious complication of acute myocardial infarction (AMI), with a very poor prognosis. Early-stage prophylactic treatment is effective in preventing the formation of VAs. However, the existing predictive models for VA formation lack the sensitivity and specificity necessary for evaluating patients with MI. This study aimed to explore the potential use of coronary angiography and establish a more precise prediction model for VA in patients with MI.

METHODS

Patients with VA ( = 52) admitted to our medical center between June 2020 and July 2021 with previous emergency percutaneous coronary intervention for AMI were retrospectively included in this database study. Controls that matched 4:1 with the VA cases during the same period were enrolled. The baseline characteristics and coronary angiograms of the enrolled individuals were obtained from the electronic medical record system. The curve length of the distance from the main criminal lesion to its ostia (DLO) and distal (DLD) in the coronary artery were measured with ImageJ. Binary logistic regression analysis was used to identify the predictive factors. The model performance was evaluated by receiver operating characteristic curve analysis.

RESULTS

Binary analysis revealed maximum serum cardiac troponin I level (odds ratio [OR] = 1.046, 95% confidence interval [CI] = 1.027-1.066, < 0.001), serum brain natriuretic peptide level (OR = 1.001, 95% CI = 1.000-1.002, = 0.007), left anterior descending artery as the culprit lesion (OR = 5.091, 95% CI = 2.080-12.457, < 0.001), and that single-vessel disease (OR = 1.809, 95% CI = 0.967-3.385, < 0.001), stenosis in the main lesion (OR = 1.247, 95% CI = 1.173-1.327, < 0.001), DLO (OR = 1.034, 95% CI = 1.019-1.049, < 0.001), DLD (OR = 1.061, 95% CI = 1.043-1.079, < 0.001), and DLD/DLD (OR = 0.033, 95% CI = 0.010-0.117, < 0.001) were the independent variables for predicting VA formation in MI patients.

CONCLUSION

Our study first used quantified information of coronary lesions to establish a predictive model and proved that a longer DLD had the greatest potential in predicting the incidence of VA. Its related parameters including DLO and DLO/DLD ratio were also correlated with the incidence of VA. These findings may provide a new reference for the early identification of high-risk MI patients and preventing VA.

摘要

背景

室壁瘤(VA)是急性心肌梗死(AMI)的一种严重并发症,预后很差。早期预防性治疗对预防室壁瘤形成有效。然而,现有的室壁瘤形成预测模型缺乏评估心肌梗死患者所需的敏感性和特异性。本研究旨在探索冠状动脉造影的潜在用途,并为心肌梗死患者建立更精确的室壁瘤预测模型。

方法

本数据库研究回顾性纳入了2020年6月至2021年7月期间因既往急性心肌梗死接受急诊经皮冠状动脉介入治疗而入住我们医疗中心的室壁瘤患者(n = 52)。纳入同期与室壁瘤病例按4:1匹配的对照。从电子病历系统中获取纳入个体的基线特征和冠状动脉造影。使用ImageJ测量冠状动脉中主要罪犯病变到其开口(DLO)和远端(DLD)的距离的曲线长度。采用二元逻辑回归分析确定预测因素。通过受试者工作特征曲线分析评估模型性能。

结果

二元分析显示,血清心肌肌钙蛋白I最高水平(比值比[OR] = 1.046,95%置信区间[CI] = 1.027 - 1.066,P < 0.001)、血清脑钠肽水平(OR = 1.001,95% CI = 1.000 - 1.002,P = 0.007)、左前降支为罪犯病变(OR = 5.091,95% CI = 2.080 - 12.457,P < 0.001),以及单支血管病变(OR = 1.809,95% CI = 0.967 - 3.385,P < 0.001)、主要病变狭窄(OR = 1.247,95% CI = 1.173 - 1.327,P < 0.001)、DLO(OR = 1.034,95% CI = 1.019 - 1.049,P < 0.001)、DLD(OR = 1.061,95% CI = 1.043 - 1.079,P < 0.001)和DLD/DLO(OR = 0.033,95% CI = 0.010 - 0.117,P < 0.001)是预测心肌梗死患者室壁瘤形成的独立变量。

结论

我们的研究首次利用冠状动脉病变的量化信息建立了预测模型,并证明较长的DLD在预测室壁瘤发生率方面具有最大潜力。其相关参数包括DLO和DLO/DLD比值也与室壁瘤发生率相关。这些发现可能为早期识别高危心肌梗死患者和预防室壁瘤提供新的参考。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/926d/9095940/09ed0b997306/fcvm-09-880289-g0001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验