Suppr超能文献

通过对阴极材料进行原子取代来抑制锂离子电池热失控的计算设计。

Computational Design to Suppress Thermal Runaway of Li-Ion Batteries via Atomic Substitutions to Cathode Materials.

作者信息

Yoshimoto Yuki, Toma Takahiro, Hongo Kenta, Nakano Kousuke, Maezono Ryo

机构信息

Department of Computer-Aided Engineering and Development, Sumitomo Metal Mining Co., Ltd., 3-5, Sobiraki-cho, Niihama, Ehime 792-0001, Japan.

Battery Research Laboratories, Sumitomo Metal Mining Co., Ltd., 17-3, Isoura-cho, Niihama, Ehime 792-0002, Japan.

出版信息

ACS Appl Mater Interfaces. 2022 May 25;14(20):23355-23363. doi: 10.1021/acsami.2c01607. Epub 2022 May 16.

Abstract

The cathode material of a lithium-ion battery is a key component that affects durability, capacity, and safety. Compared to the LiCoO cathode material (the reference standard for these properties), LiNiO can extract more Li at the same voltage and has therefore attracted considerable attention as a material that can be used to obtain higher capacity. As a trade-off, it undergoes pyrolysis relatively easily, leading to ignition and explosion hazards, which is a challenge associated with the application of this compound. Pyrolysis has been identified as a structural phase transformation of the layered rocksalt structure → spinel → cubic rocksalt. Partial substitution of Ni with various elements can reportedly suppress the transformation and, hence, the pyrolysis. It remains unclear which elemental substitutions inhibit pyrolysis and by what mechanism, leading to costly material development that relies on empirical trial and error. In this study, we developed several possible reaction models based on existing reports, estimated the enthalpy change associated with the reaction by ab initio calculations, and identified promising elemental substitutions. The possible models were narrowed down by analyzing the correlations of the predicted dependence of the reaction enthalpies on elemental substitutions, compared between different reaction models. According to this model, substitution by P and Ta affords the highest enthalpy barrier between the initial (layered rocksalt) and the final (cubic rocksalt) structures but promotes the initial transformation to spinel as a degradation. Substitution by W instead generates the barrier to the final (preventing dangerous incidents) process, as well as for the initial degradation to spinel; therefore, it is a promising strategy to suppress the predicted pyrolysis.

摘要

锂离子电池的阴极材料是影响耐久性、容量和安全性的关键组件。与LiCoO阴极材料(这些性能的参考标准)相比,LiNiO在相同电压下可以提取更多的锂,因此作为一种可用于获得更高容量的材料受到了广泛关注。作为权衡,它相对容易发生热解,导致着火和爆炸危险,这是该化合物应用中面临的一个挑战。热解已被确定为层状岩盐结构→尖晶石→立方岩盐的结构相变。据报道,用各种元素部分替代Ni可以抑制这种转变,从而抑制热解。目前尚不清楚哪些元素替代能抑制热解以及其作用机制,这导致依赖经验试错的材料开发成本高昂。在本研究中,我们基于现有报告开发了几种可能的反应模型,通过从头算计算估计了与反应相关的焓变,并确定了有前景的元素替代。通过分析不同反应模型之间预测的反应焓对元素替代的依赖性的相关性,缩小了可能的模型范围。根据该模型,用P和Ta替代在初始(层状岩盐)和最终(立方岩盐)结构之间提供了最高的焓垒,但促进了向尖晶石的初始转变作为一种降解。相反,用W替代则对最终过程(防止危险事件)以及向尖晶石的初始降解产生了障碍;因此,这是抑制预测热解的一种有前景的策略。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5a01/9136849/8d64fcce65e2/am2c01607_0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验