La Trobe University.
Universitat Politècnica de Catalunya.
Res Q Exerc Sport. 2023 Dec;94(4):905-912. doi: 10.1080/02701367.2022.2070103. Epub 2022 May 16.
With the increased access to neural networks trained to estimate body segments from images and videos, this study assessed the validity of some of these networks in enabling the assessment of body position on the bicycle. Fourteen cyclists pedaled stationarily in one session on their own bicycles while video was recorded from their sagittal plane. Reflective markers attached to key bony landmarks were used to manually digitize joint angles at two positions of the crank (3 o'clock and 6 o'clock) extracted from the videos (Reference method). These angles were compared to measurements taken from videos generated by two deep learning-based approaches designed to automatically estimate human joints (Microsoft Research Asia-MSRA and OpenPose). Mean bias for OpenPose ranged between 0.03° and 1.81°, while the MSRA method presented errors between 2.29° and 12.15°. Correlation coefficients were stronger for OpenPose than for the MSRA method in relation to the Reference method for the torso ( = 0.94 vs. 0.92), hip ( = 0.69 vs. 0.60), knee ( = 0.80 vs. 0.71), and ankle ( = 0.23 vs. 0.20). OpenPose presented better accuracy than the MSRA method in determining body position on the bicycle, but both methods seem comparable in assessing implications from changes in bicycle configuration.
随着越来越多的神经网络被用于从图像和视频中估计身体部位,本研究评估了其中一些网络在评估自行车上身体姿势方面的有效性。14 名自行车运动员在自己的自行车上一次进行了固定踩踏,同时从矢状面拍摄视频。使用附着在关键骨骼标志上的反光标记,从视频中手动数字化关节角度(参考方法),这些角度取自曲柄的两个位置(3 点钟和 6 点钟)。将这些角度与通过两种基于深度学习的方法从视频中自动估计人体关节的测量值(微软亚洲研究院-MSRA 和 OpenPose)进行比较。OpenPose 的平均偏差在 0.03°到 1.81°之间,而 MSRA 方法的误差在 2.29°到 12.15°之间。OpenPose 与参考方法的相关性系数强于 MSRA 方法,用于躯干(=0.94 对 0.92)、臀部(=0.69 对 0.60)、膝盖(=0.80 对 0.71)和脚踝(=0.23 对 0.20)。在确定自行车上的身体姿势方面,OpenPose 比 MSRA 方法具有更高的准确性,但在评估自行车配置变化的影响方面,两种方法似乎具有可比性。