Suppr超能文献

针对更高姿态的强大面部表情识别系统。

Robust facial expression recognition system in higher poses.

作者信息

Owusu Ebenezer, Appati Justice Kwame, Okae Percy

机构信息

Department of Computer Science, University of Ghana, P. O. Box LG 163, Accra, Ghana.

Department of Computer Engineering, University of Ghana, P. O. Box LG 77, Accra, Ghana.

出版信息

Vis Comput Ind Biomed Art. 2022 May 16;5(1):14. doi: 10.1186/s42492-022-00109-0.

Abstract

Facial expression recognition (FER) has numerous applications in computer security, neuroscience, psychology, and engineering. Owing to its non-intrusiveness, it is considered a useful technology for combating crime. However, FER is plagued with several challenges, the most serious of which is its poor prediction accuracy in severe head poses. The aim of this study, therefore, is to improve the recognition accuracy in severe head poses by proposing a robust 3D head-tracking algorithm based on an ellipsoidal model, advanced ensemble of AdaBoost, and saturated vector machine (SVM). The FER features are tracked from one frame to the next using the ellipsoidal tracking model, and the visible expressive facial key points are extracted using Gabor filters. The ensemble algorithm (Ada-AdaSVM) is then used for feature selection and classification. The proposed technique is evaluated using the Bosphorus, BU-3DFE, MMI, CK + , and BP4D-Spontaneous facial expression databases. The overall performance is outstanding.

摘要

面部表情识别(FER)在计算机安全、神经科学、心理学和工程学等领域有众多应用。由于其非侵入性,它被视为打击犯罪的一项有用技术。然而,FER面临若干挑战,其中最严重的是在严重头部姿态下预测准确率较低。因此,本研究的目的是通过提出一种基于椭球模型、先进的AdaBoost集成和饱和向量机(SVM)的鲁棒3D头部跟踪算法,提高在严重头部姿态下的识别准确率。使用椭球跟踪模型将FER特征从一帧跟踪到下一帧,并使用Gabor滤波器提取可见的富有表现力的面部关键点。然后使用集成算法(Ada - AdaSVM)进行特征选择和分类。使用博斯普鲁斯海峡、BU - 3DFE、MMI、CK + 和BP4D - 自发面部表情数据库对所提出的技术进行评估。整体性能出色。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3a48/9110625/15a5d60679d8/42492_2022_109_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验