School of Electronic and Electrical Engineering, Kyungpook National University, 80 Daehak-ro, Buk-gu, Daegu 41566, Korea.
Sensors (Basel). 2021 Mar 12;21(6):2026. doi: 10.3390/s21062026.
Facial emotion recognition (FER) systems play a significant role in identifying driver emotions. Accurate facial emotion recognition of drivers in autonomous vehicles reduces road rage. However, training even the advanced FER model without proper datasets causes poor performance in real-time testing. FER system performance is heavily affected by the quality of datasets than the quality of the algorithms. To improve FER system performance for autonomous vehicles, we propose a facial image threshing (FIT) machine that uses advanced features of pre-trained facial recognition and training from the Xception algorithm. The FIT machine involved removing irrelevant facial images, collecting facial images, correcting misplacing face data, and merging original datasets on a massive scale, in addition to the data-augmentation technique. The final FER results of the proposed method improved the validation accuracy by 16.95% over the conventional approach with the FER 2013 dataset. The confusion matrix evaluation based on the unseen private dataset shows a 5% improvement over the original approach with the FER 2013 dataset to confirm the real-time testing.
面部情绪识别(FER)系统在识别驾驶员情绪方面发挥着重要作用。在自动驾驶汽车中准确识别驾驶员的面部情绪可以减少路怒症。然而,如果没有适当的数据集,即使是先进的 FER 模型也会在实时测试中表现不佳。FER 系统的性能受数据集质量的影响远大于算法质量的影响。为了提高自动驾驶汽车的 FER 系统性能,我们提出了一种面部图像筛选(FIT)机器,该机器使用了预先训练好的面部识别的高级功能以及 Xception 算法的训练。FIT 机器涉及到去除不相关的面部图像、收集面部图像、纠正面部数据错位以及在大规模基础上合并原始数据集,此外还使用了数据增强技术。与使用 FER 2013 数据集的传统方法相比,所提出方法的最终 FER 结果将验证精度提高了 16.95%。基于未见私有数据集的混淆矩阵评估表明,与使用 FER 2013 数据集的原始方法相比,实时测试有 5%的改进。