Suppr超能文献

开发一个高精度自动识别植物标本系统。

Development of a system for the automated identification of herbarium specimens with high accuracy.

机构信息

Interdisciplinary Faculty of Science and Engineering, Shimane University, 1060 Nishikawatsu, Matsue, Shimane, 690-8504, Japan.

Institute for Natural and Environmental Sciences, University of Hyogo/ Museum of Nature and Human Activities, Hyogo, 6 Chome, Yayoigaoka, Sanda, Hyogo, 669-1546, Japan.

出版信息

Sci Rep. 2022 May 16;12(1):8066. doi: 10.1038/s41598-022-11450-y.

Abstract

Herbarium specimens are dried plants mounted onto paper. They are used by a limited number of researchers, such as plant taxonomists, as a source of information on morphology and distribution. Recently, digitised herbarium specimens have begun to be used in comprehensive research to address broader issues. However, some specimens have been misidentified, and if used, there is a risk of drawing incorrect conclusions. In this study, we successfully developed a system for identifying taxon names with high accuracy using an image recognition system. We developed a system with an accuracy of 96.4% using 500,554 specimen images of 2171 plant taxa (2064 species, 9 subspecies, 88 varieties, and 10 forms in 192 families) that grow in Japan. We clarified where the artificial intelligence is looking to make decisions, and which taxa is being misidentified. As the system can be applied to digitalised images worldwide, it is useful for selecting and correcting misidentified herbarium specimens.

摘要

标本馆标本是固定在纸上的干燥植物。它们仅被少数研究人员使用,例如植物分类学家,作为形态和分布信息的来源。最近,数字化的标本馆标本开始被用于全面研究,以解决更广泛的问题。但是,有些标本被错误识别,如果使用,可能会得出错误的结论。在这项研究中,我们成功地开发了一种使用图像识别系统识别分类群名称的系统,该系统具有很高的准确性。我们使用日本生长的 2171 种植物类群(2064 种、9 亚种、88 变种和 192 个科中的 10 种形式)的 500,554 个标本图像开发了一个准确率为 96.4%的系统。我们明确了人工智能在哪里做出决策,以及哪些分类群被错误识别。由于该系统可以应用于全球的数字化图像,因此对于选择和纠正错误识别的标本馆标本非常有用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4e18/9110755/629dcfbbf2df/41598_2022_11450_Fig1_HTML.jpg

相似文献

1
3
Medicinal plant uses and names from the herbarium of Francesc Bolòs (1773-1844).
J Ethnopharmacol. 2017 May 23;204:142-168. doi: 10.1016/j.jep.2017.04.002. Epub 2017 Apr 12.
5
Going deeper in the automated identification of Herbarium specimens.
BMC Evol Biol. 2017 Aug 11;17(1):181. doi: 10.1186/s12862-017-1014-z.
6
The Herbarium 2021 Half-Earth Challenge Dataset and Machine Learning Competition.
Front Plant Sci. 2022 Feb 1;12:787127. doi: 10.3389/fpls.2021.787127. eCollection 2021.
7
Factors Affecting Targeted Sequencing of 353 Nuclear Genes From Herbarium Specimens Spanning the Diversity of Angiosperms.
Front Plant Sci. 2019 Sep 18;10:1102. doi: 10.3389/fpls.2019.01102. eCollection 2019.
8
Herbarium Specimens: A Treasure for DNA Extraction, an Update.
Methods Mol Biol. 2021;2222:69-88. doi: 10.1007/978-1-0716-0997-2_4.
9
Plant identification credibility in ethnobotany: a closer look at Polish ethnographic studies.
J Ethnobiol Ethnomed. 2010 Dec 17;6:36. doi: 10.1186/1746-4269-6-36.
10
Toward a service-based workflow for automated information extraction from herbarium specimens.
Database (Oxford). 2018 Jan 1;2018:bay103. doi: 10.1093/database/bay103.

引用本文的文献

1
Hespi: a pipeline for automatically detecting information from herbarium specimen sheets.
Bioscience. 2025 Jul 17;75(8):637-648. doi: 10.1093/biosci/biaf042. eCollection 2025 Aug.
2
The digitisation workflow of the herbarium of the State Museum of Natural History of the NAS of Ukraine (LWS).
Biodivers Data J. 2025 Mar 28;13:e148861. doi: 10.3897/BDJ.13.e148861. eCollection 2025.
3
Assembly-free reads accurate identification (AFRAID) approach outperforms other methods of DNA barcoding in the walnut family (Juglandaceae).
Plant Divers. 2024 Oct 16;47(1):115-126. doi: 10.1016/j.pld.2024.10.002. eCollection 2025 Jan.
4
Exploring the landscape of automated species identification apps: Development, promise, and user appraisal.
Bioscience. 2024 Oct 8;74(9):601-613. doi: 10.1093/biosci/biae077. eCollection 2024 Sep.

本文引用的文献

1
The Herbarium 2021 Half-Earth Challenge Dataset and Machine Learning Competition.
Front Plant Sci. 2022 Feb 1;12:787127. doi: 10.3389/fpls.2021.787127. eCollection 2021.
2
Mining museums for historical DNA: advances and challenges in museomics.
Trends Ecol Evol. 2021 Nov;36(11):1049-1060. doi: 10.1016/j.tree.2021.07.009. Epub 2021 Aug 26.
3
Integrating multiple sources of ecological data to unveil macroscale species abundance.
Nat Commun. 2020 Apr 3;11(1):1695. doi: 10.1038/s41467-020-15407-5.
4
Breaking the silence of the 500-year-old smiling garden of everlasting flowers: The En Tibi book herbarium.
PLoS One. 2019 Jun 26;14(6):e0217779. doi: 10.1371/journal.pone.0217779. eCollection 2019.
5
Simple but long-lasting: A specimen imaging method applicable for small- and medium-sized herbaria.
PhytoKeys. 2019 Feb 18(118):1-14. doi: 10.3897/phytokeys.118.29434. eCollection 2019.
6
Mobilizing and integrating big data in studies of spatial and phylogenetic patterns of biodiversity.
Plant Divers. 2016 Dec 24;38(6):264-270. doi: 10.1016/j.pld.2016.12.001. eCollection 2016 Dec.
7
Digitization of herbaria enables novel research.
Am J Bot. 2017 Sep;104(9):1281-1284. doi: 10.3732/ajb.1700281.
8
Automated plant species identification-Trends and future directions.
PLoS Comput Biol. 2018 Apr 5;14(4):e1005993. doi: 10.1371/journal.pcbi.1005993. eCollection 2018 Apr.
9
Going deeper in the automated identification of Herbarium specimens.
BMC Evol Biol. 2017 Aug 11;17(1):181. doi: 10.1186/s12862-017-1014-z.
10
Retrospective analysis of heavy metal contamination in Rhode Island based on old and new herbarium specimens.
Appl Plant Sci. 2017 Jan 6;5(1). doi: 10.3732/apps.1600108. eCollection 2017 Jan.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验