Turnbull Robert, Fitzgerald Emily, Thompson Karen M, Birch Joanne L
Melbourne Data Analytics Platform.
School of BioSciences at the University of Melbourne, Melbourne, Victoria, Australia.
Bioscience. 2025 Jul 17;75(8):637-648. doi: 10.1093/biosci/biaf042. eCollection 2025 Aug.
Specimen-associated biodiversity data are crucial for biological, environmental, and conservation sciences. A rate shift is needed to extract data from specimen images efficiently, moving beyond human-mediated transcription. We developed Hespi (for ) using advanced computer vision techniques to extract authoritative data applicable for a range of research purposes from primary specimen labels on herbarium specimens. Hespi integrates two object detection models: one for detecting the components of the sheet and another for fields on the primary specimen label. It classifies labels as printed, typed, handwritten, or mixed and uses optical character recognition and handwritten text recognition for extraction. The text is then corrected against authoritative taxon databases and refined using a multimodal large language model. Hespi accurately detects and extracts text from specimen sheets across international herbaria, and its modular design allows users to train and integrate custom models.
与标本相关的生物多样性数据对生物学、环境科学和保护科学至关重要。需要一种速率转变来有效地从标本图像中提取数据,超越人工转录。我们开发了Hespi(用于 ),利用先进的计算机视觉技术从植物标本馆标本的原始标本标签中提取适用于一系列研究目的的权威数据。Hespi集成了两个目标检测模型:一个用于检测标本页的组成部分,另一个用于检测原始标本标签上的字段。它将标签分类为印刷、打字、手写或混合类型,并使用光学字符识别和手写文本识别进行提取。然后,根据权威分类群数据库对文本进行校正,并使用多模态大语言模型进行优化。Hespi能够准确地从国际植物标本馆的标本页中检测和提取文本,其模块化设计允许用户训练和集成自定义模型。