Yang Jiachen, Zhou Yanshuang, Zhao Yang, Lu Wen, Gao Xinbo
IEEE Trans Cybern. 2023 Sep;53(9):5716-5728. doi: 10.1109/TCYB.2022.3169017. Epub 2023 Aug 17.
Image aesthetics assessment (IAA) is a subjective and complex task. The aesthetics of different themes vary greatly in content and aesthetic results, whether they are in the same aesthetic community or not. In aesthetic evaluation tasks, the pretrained network with direct fine-tune may not be able to quickly adapt to tasks on various themes. This article introduces a metalearning-based multipatch (MetaMP) IAA method to adapt to various thematic tasks quickly. The network is trained based on metalearning to obtain content-oriented aesthetic expression. In addition, we design a complete-information patch selection scheme and a multipatch (MP) network to make the fine details fit the overall impression. Experimental results demonstrate the superiority of the proposed method in comparison with the state-of-the-art models based on aesthetic visual analysis (AVA) benchmark datasets. In addition, the evaluation of the dataset shows the effectiveness of our metalearning training model, which not only improves MetaMP assessment accuracy but also provides valuable guidance for network initialization of IAA.
图像美学评估(IAA)是一项主观且复杂的任务。不同主题的美学在内容和审美结果上差异很大,无论它们是否属于同一审美群体。在审美评估任务中,直接微调的预训练网络可能无法快速适应各种主题的任务。本文介绍了一种基于元学习的多补丁(MetaMP)IAA方法,以快速适应各种主题任务。该网络基于元学习进行训练,以获得面向内容的审美表达。此外,我们设计了一种全信息补丁选择方案和一个多补丁(MP)网络,以使细节与整体印象相匹配。实验结果表明,与基于美学视觉分析(AVA)基准数据集的现有模型相比,该方法具有优越性。此外,数据集评估显示了我们的元学习训练模型的有效性,它不仅提高了MetaMP评估的准确性,还为IAA的网络初始化提供了有价值的指导。