Xie Mengying, Liu Xiaolan, Yang Xiaowei, Cai Wenzeng
IEEE Trans Cybern. 2023 Dec;53(12):7521-7534. doi: 10.1109/TCYB.2022.3169800. Epub 2023 Nov 29.
Multichannel image completion with mixture noise is a common but complex problem in the fields of machine learning, image processing, and computer vision. Most existing algorithms devote to explore global low-rank information and fail to optimize local and joint-mode structures, which may lead to oversmooth restoration results or lower quality restoration details. In this study, we propose a novel model to deal with multichannel image completion with mixture noise based on adaptive sparse low-rank tensor subspace and nonlocal self-similarity (ASLTS-NS). In the proposed model, a nonlocal similar patch matching framework cooperating with Tucker decomposition is used to explore information of global and joint modes and optimize the local structure for improving restoration quality. In order to enhance the robustness of low-rank decomposition to data missing and mixture noise, we present an adaptive sparse low-rank regularization to construct robust tensor subspace for self-weighing importance of different modes and capturing a stable inherent structure. In addition, joint tensor Frobenius and l regularizations are exploited to control two different types of noise. Based on alternating directions method of multipliers (ADMM), a convergent learning algorithm is designed to solve this model. Experimental results on three different types of multichannel image sets demonstrate the advantages of ASLTS-NS under five complex scenarios.
含混合噪声的多通道图像修复是机器学习、图像处理和计算机视觉领域中一个常见但复杂的问题。大多数现有算法致力于探索全局低秩信息,而未能优化局部和联合模式结构,这可能导致恢复结果过度平滑或恢复细节质量较低。在本研究中,我们提出了一种基于自适应稀疏低秩张量子空间和非局部自相似性(ASLTS-NS)的新型模型来处理含混合噪声的多通道图像修复。在所提出的模型中,一个与塔克分解协作的非局部相似补丁匹配框架用于探索全局和联合模式的信息,并优化局部结构以提高恢复质量。为了增强低秩分解对数据缺失和混合噪声的鲁棒性,我们提出一种自适应稀疏低秩正则化来构建鲁棒张量子空间,以自我权衡不同模式的重要性并捕获稳定的固有结构。此外,利用联合张量弗罗贝尼乌斯范数和l范数正则化来控制两种不同类型的噪声。基于交替方向乘子法(ADMM),设计了一种收敛学习算法来求解该模型。在三种不同类型的多通道图像集上的实验结果证明了ASLTS-NS在五种复杂场景下的优势。