Am Nat. 2022 Jun;199(6):789-803. doi: 10.1086/719409. Epub 2022 Apr 18.
AbstractPredicting temperature effects on species interactions can be challenging, especially for parasitism, where it is difficult to experimentally separate host and parasite thermal performance curves. Prior authors proposed a possible solution based on the metabolic theory of ecology (MTE), using MTE-based equations to describe the thermal mismatch between host and parasite performance curves and account for thermal acclimation responses. Here, we use published infection data, supplemented with experiments measuring metabolic responses to temperature in each species, to show that this modeling framework can successfully describe thermal acclimation effects on two different stages of infection in a tadpole-trematode system. All thermal acclimation effects on host performance manifested as changes in one key model parameter (activation energy), with measurements of host respiration generating similar MTE parameter estimates and acclimation effects compared with measurements of the host's ability to clear encysted parasites. This result suggests that metabolic parameter estimates for whole-body metabolism can sometimes be used to estimate temperature effects on host and parasite performance curves. However, we found different thermal patterns for measurements of host prevention of initial parasite encystment emphasizing potential challenges when applying MTE-based models to complex parasite-host systems with multiple distinct stages of infection.
摘要 预测温度对物种相互作用的影响具有挑战性,特别是对于寄生虫而言,因为很难在实验中分离宿主和寄生虫的热性能曲线。先前的作者提出了一种可能的解决方案,基于生态代谢理论(MTE),使用基于 MTE 的方程来描述宿主和寄生虫性能曲线之间的热不匹配,并考虑热驯化反应。在这里,我们使用已发表的感染数据,并补充测量每个物种对温度的代谢反应的实验,表明该建模框架可以成功描述在一个蝌蚪 - 吸虫系统中感染的两个不同阶段的热驯化效应。宿主性能的所有热驯化效应都表现为一个关键模型参数(活化能)的变化,与宿主清除囊蚴的能力相比,宿主呼吸的测量产生了类似的 MTE 参数估计值和驯化效应。这一结果表明,有时可以使用全身代谢的代谢参数估计值来估计温度对宿主和寄生虫性能曲线的影响。然而,我们发现宿主预防初始寄生虫囊蚴形成的测量结果存在不同的热模式,这强调了在应用基于 MTE 的模型来处理具有多个不同感染阶段的复杂寄生虫 - 宿主系统时可能存在的挑战。