College of Science, George Mason University, Fairfax, Virginia 22030, United States.
Center for Bio/Molecular Science and Engineering Code 6900, US Naval Research Laboratory, Washington, DC 20375, United States.
Nano Lett. 2022 Jun 22;22(12):5037-5045. doi: 10.1021/acs.nanolett.2c00917. Epub 2022 May 17.
DNA nanostructures have proven potential in biomedicine. However, their intracellular interactions─especially cytosolic stability─remain mostly unknown and attempts to discern this are confounded by the complexities of endocytic uptake and entrapment. Here, we bypass the endocytic uptake and evaluate the DNA structural stability directly in live cells. Commonly used DNA structures─crosshairs and a tetrahedron─were labeled with a multistep Förster resonance energy transfer dye cascade and microinjected into the cytosol of transformed and primary cells. Energy transfer loss, as monitored by fluorescence microscopy, reported the structure's direct time-resolved breakdown . The results showed rapid degradation of the DNA crosshair within 20 min, while the tetrahedron remained consistently intact for at least 1 h postinjection. Nuclease assays in conjunction with a current understanding of the tetrahedron's torsional rigidity confirmed its higher stability. Such studies can inform design parameters for future DNA nanostructures where programmable degradation rates may be required.
DNA 纳米结构在生物医药领域已被证明具有巨大的潜力。然而,其在细胞内的相互作用,尤其是在细胞质中的稳定性,仍知之甚少,并且尝试去探究这一点也因内吞作用和滞留的复杂性而受到阻碍。在这里,我们绕过内吞作用,直接在活细胞中评估 DNA 结构的稳定性。我们用多步Förster 共振能量转移染料级联标记了常见的 DNA 结构——十字准线和四面体,并将其微注射到转化细胞和原代细胞的细胞质中。通过荧光显微镜监测能量转移损耗,报告了结构的直接时间分辨分解。结果表明,DNA 十字准线在 20 分钟内迅速降解,而四面体在注射后至少 1 小时内保持完整。与当前对四面体扭转刚度的理解相结合的核酸酶检测实验证实了其更高的稳定性。这些研究可以为未来需要可编程降解率的 DNA 纳米结构的设计参数提供信息。