Li Yuxian, Zhuang Daming, Zhao Ming, Wang Chen, Tong Hao, Dong Liangzheng, Tao Shengye, Wang Hanpeng
School of Materials Science and Engineering, Tsinghua University, 100084 Beijing, PR China.
Key Laboratory for Advanced Materials Processing Technology of Ministry of Education, 100084 Beijing, PR China.
ACS Appl Mater Interfaces. 2022 Jun 1;14(21):24435-24446. doi: 10.1021/acsami.2c04919. Epub 2022 May 17.
We developed a novel process for fabricating oxygen-rich Zn(O,S) buffer layers by magnetron reactive sputtering with a single oxygen-rich Zn(O,S) target, suitable for industrial all-dry production. Then, we successfully fabricated Cd-free Cu(In,Ga)(S,Se) (CIGSSe) solar cells. By varying the oxygen partial pressure during sputtering from 0 to 20%, we precisely controlled the Zn(O,S) composition, then systematically investigated its effects on the quality of oxygen-rich Zn(O,S) films, the properties of formed p-n junctions, and the performance of CIGSSe solar cells with Zn(O,S) buffer. We demonstrated that reactive sputtering with a Zn(O,S) target can generate a homogeneous, high-quality oxygen-rich Zn(O,S) buffer on large-area substrates. We observed a unique and unusual phenomenon: the appropriate content of secondary phase ZnSO and ZnSO improved the band alignment for oxygen-rich Zn(O,S). Combining our proposed schematic diagram of band alignmentat the Zn(O,S)/CIGSSe interface, we established a crucial correlation between the device performance and the interfacial properties at the p-n junction. For the CIGSSe device performance, the band alignment matching at the heterojunction plays a primary role, and the quality of oxygen-rich Zn(O,S) films plays a secondary role. Consequently, an excellent oxygen-rich Zn(O,S) buffer can be obtained with 10% Zn(O,S) deposition oxygen partial pressure , and the optimized device shows a higher (447 mV) and a similar conversion efficiency (11.2%) than conventional CIGSSe devices with CdS buffer.
我们开发了一种通过磁控反应溅射制备富氧Zn(O,S)缓冲层的新工艺,该工艺使用单一的富氧Zn(O,S)靶材,适用于工业全干法生产。然后,我们成功制备了无镉Cu(In,Ga)(S,Se)(CIGSSe)太阳能电池。通过将溅射过程中的氧分压从0%变化到20%,我们精确控制了Zn(O,S)的组成,然后系统地研究了其对富氧Zn(O,S)薄膜质量、形成的p-n结特性以及具有Zn(O,S)缓冲层的CIGSSe太阳能电池性能的影响。我们证明,使用Zn(O,S)靶材进行反应溅射可以在大面积衬底上生成均匀、高质量的富氧Zn(O,S)缓冲层。我们观察到一个独特且不寻常的现象:第二相ZnSO和ZnSO的适当含量改善了富氧Zn(O,S)的能带对准。结合我们提出的Zn(O,S)/CIGSSe界面能带对准示意图,我们建立了器件性能与p-n结界面特性之间的关键关联。对于CIGSSe器件性能,异质结处的能带对准匹配起主要作用,富氧Zn(O,S)薄膜的质量起次要作用。因此,在10%的Zn(O,S)沉积氧分压下可以获得优异的富氧Zn(O,S)缓冲层,并且优化后的器件显示出比具有CdS缓冲层的传统CIGSSe器件更高的开路电压(447 mV)和相似的转换效率(11.2%)。