Institute of Immunology, Third Military Medical University, Chongqing, China.
Department of Dermatology, the Fourth Medical Center, Chinese PLA General Hospital, Beijing, China.
J Immunother Cancer. 2022 May;10(5). doi: 10.1136/jitc-2021-004022.
Antitumor therapeutic vaccines are generally based on antigenic epitopes presented by major histocompatibility complex (MHC-I) molecules to induce tumor-specific CD8 T cells. Paradoxically, continuous T cell receptor (TCR) stimulation from tumor-derived CD8 T-cell epitopes can drive the functional exhaustion of tumor-specific CD8 T cells. Tumor-specific type-I helper CD4 T (T1) cells play an important role in the population maintenance and cytotoxic function of exhausted tumor-specific CD8 T cells in the tumor microenvironment. Nonetheless, whether the vaccination strategy targeting MHC-II-restricted CD4 T-cell epitopes to induce tumor-specific T1 responses can confer effective antitumor immunity to restrain tumor growth is not well studied. Here, we developed a heterologous prime-boost vaccination strategy to effectively induce tumor-specific T1 cells and evaluated its antitumor efficacy and its capacity to potentiate PD-1/PD-L1 immunotherapy.
vector and influenza A virus (PR8 strain) vector stably expressing lymphocytic choriomeningitis virus (LCMV) glycoprotein-specific I-A-restricted CD4 T cell epitope (GP) or ovalbumin-specific CD4 T cell epitope (OVA) were constructed and evaluated their efficacy against mouse models of melanoma and colorectal adenocarcinoma expressing lymphocytic choriomeningitis virus glycoprotein and ovalbumin. The impact of CD4 T cell epitope-based heterologous prime-boost vaccination was detected by flow-cytometer, single-cell RNA sequencing and single-cell TCR sequencing.
CD4 T cell epitope-based heterologous prime-boost vaccination efficiently suppressed both mouse melanoma and colorectal adenocarcinoma. This vaccination primarily induced tumor-specific T1 response, which in turn enhanced the expansion, effector function and clonal breadth of tumor-specific CD8 T cells. Furthermore, this vaccination strategy synergized PD-L1 blockade mediated tumor suppression. Notably, prime-boost vaccination extended the duration of PD-L1 blockade induced antitumor effects by preventing the re-exhaustion of tumor-specific CD8 T cells.
CD4 T cell epitope-based heterologous prime-boost vaccination elicited potent both tumor-specific T1 and CTL response, leading to the efficient tumor control. This strategy can also potentiate PD-1/PD-L1 immune checkpoint blockade (ICB) against cancer.
抗肿瘤治疗性疫苗通常基于主要组织相容性复合体 (MHC-I) 分子呈递的抗原表位,以诱导肿瘤特异性 CD8 T 细胞。矛盾的是,来自肿瘤衍生的 CD8 T 细胞表位的连续 T 细胞受体 (TCR) 刺激会导致肿瘤特异性 CD8 T 细胞的功能耗竭。肿瘤特异性 I 型辅助 CD4 T(T1)细胞在肿瘤微环境中维持耗竭的肿瘤特异性 CD8 T 细胞的群体和细胞毒性功能中发挥重要作用。尽管如此,针对 MHC-II 限制性 CD4 T 细胞表位的疫苗接种策略是否能够诱导有效的抗肿瘤免疫以抑制肿瘤生长尚不清楚。在这里,我们开发了一种异源初免-加强接种策略,有效地诱导了肿瘤特异性 T1 细胞,并评估了其抗肿瘤疗效及其增强 PD-1/PD-L1 免疫疗法的能力。
构建并评估了稳定表达淋巴细胞性脉络丛脑膜炎病毒 (LCMV) 糖蛋白特异性 I-A 限制性 CD4 T 细胞表位 (GP) 或卵清蛋白特异性 CD4 T 细胞表位 (OVA) 的载体和流感 A 病毒 (PR8 株) 载体,用于针对表达淋巴细胞性脉络丛脑膜炎病毒糖蛋白和卵清蛋白的黑色素瘤和结直肠腺癌小鼠模型。通过流式细胞仪、单细胞 RNA 测序和单细胞 TCR 测序检测基于 CD4 T 细胞表位的异源初免-加强接种的效果。
基于 CD4 T 细胞表位的异源初免-加强接种有效地抑制了黑色素瘤和结直肠腺癌。这种疫苗接种主要诱导了肿瘤特异性 T1 反应,进而增强了肿瘤特异性 CD8 T 细胞的扩增、效应功能和克隆多样性。此外,这种疫苗接种策略与 PD-L1 阻断介导的肿瘤抑制协同作用。值得注意的是,通过防止肿瘤特异性 CD8 T 细胞的再次耗竭,初免-加强接种延长了 PD-L1 阻断诱导的抗肿瘤作用的持续时间。
基于 CD4 T 细胞表位的异源初免-加强接种引发了强烈的肿瘤特异性 T1 和 CTL 反应,从而有效地控制了肿瘤。该策略还可以增强 PD-1/PD-L1 免疫检查点阻断(ICB)对癌症的作用。