Suppr超能文献

四烷基铵基团修饰碳点以精细调控其抗菌活性。

Surface modification of carbon dots with tetraalkylammonium moieties for fine tuning their antibacterial activity.

机构信息

Research School of Chemistry and Applied Biomedical Sciences, Tomsk Polytechnic University, 634050 Tomsk, Russian Federation.

Univ. Lille, CNRS, Centrale Lille, Univ. Polytechnique Hauts-de-France, IEMN, UMR CNRS 8520, F-59000 Lille, France.

出版信息

Biomater Adv. 2022 Mar;134:112697. doi: 10.1016/j.msec.2022.112697. Epub 2022 Feb 8.

Abstract

The widespread of bacterial infections including biofilms drives the never-ending quest for new antimicrobial agents. Among the great variety of nanomaterials, carbon dots (CDs) are the most promising antibacterial material, but still require the adjustment of their surface properties for enhanced activity. In this contribution, we report a facile functionalization method of carbon dots (CDs) by tetraalkylammonium moieties using diazonium chemistry to improve their antibacterial activity against Gram-positive and Gram-negative bacteria. CDs were modified by novel diazonium salts bearing tetraalkylammonium moieties (TAA) with different alkyl chains (C2, C4, C9, C12) for the optimization of antibacterial activity. Variation of the alkyl chain allows to reach the significant antibacterial effect for CDs-C9 towards Gram-positive Staphylococcus aureus (S. aureus) (MIC = 3.09 ± 1.10 μg mL) and Gram-negative Escherichia coli (E. coli) (MIC = 7.93 ± 0.17 μg mL) bacteria. The antibacterial mechanism of CDs-C9 is ascribed to the balance between the positive charge and hydrophobicity of the alkyl chains. TAA moieties are responsible for enhanced adherence on the bacterial cell membrane, its penetration and disturbance of physiological metabolism. CDs-C9 were not effective in the generation of reactive oxygen species excluding the oxidative damage mechanism. In addition, CDs-C9 effectively promoted the antibiofilm treatment of S. aureus and E. coli biofilms outperforming previously-reported CDs in terms of treatment duration and minimal inhibitory concentration. The good biocompatibility of CDs-C9 was demonstrated on mouse fibroblast (NIH/3T3), HeLa and U-87 MG cell lines for concentrations up to 256 μg mL. Collectively, our work highlights the correlation between the surface chemistry of CDs and their antimicrobial performance.

摘要

细菌感染(包括生物膜)的广泛传播推动了人们对新型抗菌剂的不懈探索。在各种各样的纳米材料中,碳点(CDs)是最有前途的抗菌材料,但仍需要调整其表面特性以提高其活性。在本研究中,我们报告了一种通过使用重氮化学将四烷基铵部分接枝到碳点(CDs)上来改善其对革兰氏阳性和革兰氏阴性细菌的抗菌活性的简便功能化方法。通过使用带有不同烷基链(C2、C4、C9、C12)的新型重氮盐对 CDs 进行改性,以优化其抗菌活性。烷基链的变化可以使 CDs-C9 对革兰氏阳性金黄色葡萄球菌(S. aureus)(MIC = 3.09 ± 1.10 μg mL)和革兰氏阴性大肠杆菌(E. coli)(MIC = 7.93 ± 0.17 μg mL)具有显著的抗菌效果。CDs-C9 的抗菌机制归因于烷基链的正电荷和疏水性之间的平衡。TAA 部分负责增强对细菌细胞膜的粘附,其穿透和干扰生理代谢。CDs-C9 不会有效地产生活性氧,排除氧化损伤机制。此外,CDs-C9 有效地促进了金黄色葡萄球菌和大肠杆菌生物膜的抗生物膜治疗,在治疗时间和最小抑菌浓度方面优于以前报道的 CDs。CDs-C9 在浓度高达 256 μg mL 时对小鼠成纤维细胞(NIH/3T3)、HeLa 和 U-87 MG 细胞系显示出良好的生物相容性。总的来说,我们的工作强调了 CDs 的表面化学与其抗菌性能之间的相关性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验