Department of Biomedical Engineering, Indiana University-Purdue University Indianapolis, Indianapolis, IN 46202, USA.
Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN 47907, USA.
Biomater Adv. 2022 Mar;134:112712. doi: 10.1016/j.msec.2022.112712. Epub 2022 Feb 14.
Mesenchymal stem cells (MSCs)-based therapies have been widely used to promote tissue regeneration and to modulate immune/inflammatory response. The therapeutic potential of MSCs can be further improved by forming multi-cellular spheroids. Meanwhile, hydrogels with macroporous structures are advantageous for improving mass transport properties for the cell-laden matrices. Herein, we report the fabrication of MSC-laden macroporous hydrogel scaffolds through incorporating rapidly dissolvable spherical cell-laden microgels. Dissolvable microgels were fabricated by tandem droplet-microfluidics and thiol-norbornene photopolymerization using a novel fast-degrading macromer poly(ethylene glycol)-norbornene-dopamine (PEGNB-Dopa). The cell-laden PEGNB-Dopa microgels were subsequently encapsulated within another bulk hydrogel matrix, whose porous structure was generated efficiently by the rapid degradation of the PEGNB-Dopa microgels. The cytocompatibility of this in situ pore-forming approach was demonstrated with multiple cell types. Furthermore, adjusting the stiffness and cell adhesiveness of the bulk hydrogels afforded the formation of solid cell spheroids or hollow spheres. The assembly of solid or hollow MSC spheroids led to differential activation of AKT pathway. Finally, MSCs solid spheroids formed in situ within the macroporous hydrogels exhibited robust secretion of HGF, VEGF-A, IL-6, IL-8, and TIMP-2. In summary, this platform provides an innovative method for forming cell-laden macroporous hydrogels for a variety of future biomedical applications.
间充质干细胞(MSCs)治疗已广泛用于促进组织再生和调节免疫/炎症反应。通过形成多细胞球体,可以进一步提高 MSCs 的治疗潜力。同时,具有大孔结构的水凝胶有利于改善细胞负载基质的质量传递特性。在此,我们通过掺入可快速溶解的球形细胞负载微凝胶来报告 MSC 负载的大孔水凝胶支架的制造。可溶解的微凝胶是通过串联液滴微流控和巯基-降冰片烯光聚合使用新型快速降解的大分子聚乙二醇-降冰片烯-多巴胺(PEGNB-Dopa)来制备的。随后将负载细胞的 PEGNB-Dopa 微凝胶包封在另一个本体水凝胶基质中,PEGNB-Dopa 微凝胶的快速降解有效地产生了多孔结构。这种原位成孔方法的细胞相容性已通过多种细胞类型得到证明。此外,调节本体水凝胶的刚度和细胞粘附性可形成实心细胞球体或空心球体。实心或空心 MSC 球体的组装导致 AKT 途径的差异激活。最后,在大孔水凝胶内原位形成的 MSC 实心球体表现出 HGF、VEGF-A、IL-6、IL-8 和 TIMP-2 的强大分泌。总之,该平台为形成用于各种未来生物医学应用的细胞负载大孔水凝胶提供了一种创新方法。