Suppr超能文献

可溶解微凝胶模板化的大孔水凝胶用于控制细胞组装。

Dissolvable microgel-templated macroporous hydrogels for controlled cell assembly.

机构信息

Department of Biomedical Engineering, Indiana University-Purdue University Indianapolis, Indianapolis, IN 46202, USA.

Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN 47907, USA.

出版信息

Biomater Adv. 2022 Mar;134:112712. doi: 10.1016/j.msec.2022.112712. Epub 2022 Feb 14.

Abstract

Mesenchymal stem cells (MSCs)-based therapies have been widely used to promote tissue regeneration and to modulate immune/inflammatory response. The therapeutic potential of MSCs can be further improved by forming multi-cellular spheroids. Meanwhile, hydrogels with macroporous structures are advantageous for improving mass transport properties for the cell-laden matrices. Herein, we report the fabrication of MSC-laden macroporous hydrogel scaffolds through incorporating rapidly dissolvable spherical cell-laden microgels. Dissolvable microgels were fabricated by tandem droplet-microfluidics and thiol-norbornene photopolymerization using a novel fast-degrading macromer poly(ethylene glycol)-norbornene-dopamine (PEGNB-Dopa). The cell-laden PEGNB-Dopa microgels were subsequently encapsulated within another bulk hydrogel matrix, whose porous structure was generated efficiently by the rapid degradation of the PEGNB-Dopa microgels. The cytocompatibility of this in situ pore-forming approach was demonstrated with multiple cell types. Furthermore, adjusting the stiffness and cell adhesiveness of the bulk hydrogels afforded the formation of solid cell spheroids or hollow spheres. The assembly of solid or hollow MSC spheroids led to differential activation of AKT pathway. Finally, MSCs solid spheroids formed in situ within the macroporous hydrogels exhibited robust secretion of HGF, VEGF-A, IL-6, IL-8, and TIMP-2. In summary, this platform provides an innovative method for forming cell-laden macroporous hydrogels for a variety of future biomedical applications.

摘要

间充质干细胞(MSCs)治疗已广泛用于促进组织再生和调节免疫/炎症反应。通过形成多细胞球体,可以进一步提高 MSCs 的治疗潜力。同时,具有大孔结构的水凝胶有利于改善细胞负载基质的质量传递特性。在此,我们通过掺入可快速溶解的球形细胞负载微凝胶来报告 MSC 负载的大孔水凝胶支架的制造。可溶解的微凝胶是通过串联液滴微流控和巯基-降冰片烯光聚合使用新型快速降解的大分子聚乙二醇-降冰片烯-多巴胺(PEGNB-Dopa)来制备的。随后将负载细胞的 PEGNB-Dopa 微凝胶包封在另一个本体水凝胶基质中,PEGNB-Dopa 微凝胶的快速降解有效地产生了多孔结构。这种原位成孔方法的细胞相容性已通过多种细胞类型得到证明。此外,调节本体水凝胶的刚度和细胞粘附性可形成实心细胞球体或空心球体。实心或空心 MSC 球体的组装导致 AKT 途径的差异激活。最后,在大孔水凝胶内原位形成的 MSC 实心球体表现出 HGF、VEGF-A、IL-6、IL-8 和 TIMP-2 的强大分泌。总之,该平台为形成用于各种未来生物医学应用的细胞负载大孔水凝胶提供了一种创新方法。

相似文献

1
Dissolvable microgel-templated macroporous hydrogels for controlled cell assembly.
Biomater Adv. 2022 Mar;134:112712. doi: 10.1016/j.msec.2022.112712. Epub 2022 Feb 14.
4
One Step Encapsulation of Mesenchymal Stromal Cells in PEG Norbornene Microgels for Therapeutic Actions.
ACS Biomater Sci Eng. 2023 Nov 13;9(11):6322-6332. doi: 10.1021/acsbiomaterials.3c01057. Epub 2023 Oct 13.
5
4D Printing of Extrudable and Degradable Poly(Ethylene Glycol) Microgel Scaffolds for Multidimensional Cell Culture.
Small. 2022 Sep;18(36):e2200951. doi: 10.1002/smll.202200951. Epub 2022 Jun 22.
6
Cartilage tissue formation through assembly of microgels containing mesenchymal stem cells.
Acta Biomater. 2018 Sep 1;77:48-62. doi: 10.1016/j.actbio.2018.07.015. Epub 2018 Jul 10.
9
Bioinspired Microstructure Platform for Modular Cell-Laden Microgel Fabrication.
Macromol Biosci. 2021 Sep;21(9):e2100110. doi: 10.1002/mabi.202100110. Epub 2021 Jul 3.
10
Synergistic interplay between human MSCs and HUVECs in 3D spheroids laden in collagen/fibrin hydrogels for bone tissue engineering.
Acta Biomater. 2019 Sep 1;95:348-356. doi: 10.1016/j.actbio.2019.02.046. Epub 2019 Mar 1.

引用本文的文献

1
Photo-responsive decellularized small intestine submucosa hydrogels.
Adv Funct Mater. 2024 Sep 4;34(36). doi: 10.1002/adfm.202401952. Epub 2024 Apr 18.
2
Triple click chemistry for crosslinking, stiffening, and annealing of gelatin-based microgels.
RSC Appl Polym. 2024 Mar 28;2(4):656-669. doi: 10.1039/d3lp00249g. eCollection 2024 Jul 18.
3
Porous Hydrogels for Immunomodulatory Applications.
Int J Mol Sci. 2024 May 9;25(10):5152. doi: 10.3390/ijms25105152.
4
Degradable and Multifunctional PEG-Based Hydrogels Formed by iEDDA Click Chemistry with Stable Click-Induced Supramolecular Interactions.
Macromolecules. 2024 Feb 16;57(4):1556-1568. doi: 10.1021/acs.macromol.3c01855. eCollection 2024 Feb 27.
6
Digital Light Processing 3D Bioprinting of Gelatin-Norbornene Hydrogel for Enhanced Vascularization.
Macromol Biosci. 2023 Dec;23(12):e2300213. doi: 10.1002/mabi.202300213. Epub 2023 Aug 9.
8
Poly(ethylene glycol)-Norbornene as a Photoclick Bioink for Digital Light Processing 3D Bioprinting.
ACS Appl Mater Interfaces. 2023 Jan 18;15(2):2737-2746. doi: 10.1021/acsami.2c20098. Epub 2023 Jan 6.
9
10
Engineered biomaterials to guide spheroid formation, function, and fabrication into 3D tissue constructs.
Acta Biomater. 2023 Jul 15;165:4-18. doi: 10.1016/j.actbio.2022.09.052. Epub 2022 Sep 24.

本文引用的文献

1
Facile Synthesis of Rapidly Degrading PEG-Based Thiol-Norbornene Hydrogels.
ACS Macro Lett. 2021 Mar 16;10(3):341-345. doi: 10.1021/acsmacrolett.1c00056. Epub 2021 Feb 9.
2
Preventing tumor progression to the bone by induced tumor-suppressing MSCs.
Theranostics. 2021 Mar 5;11(11):5143-5159. doi: 10.7150/thno.58779. eCollection 2021.
3
Mesenchymal Stem Cells for Neurological Disorders.
Adv Sci (Weinh). 2021 Feb 24;8(7):2002944. doi: 10.1002/advs.202002944. eCollection 2021 Apr.
4
Increased Mesenchymal Stem Cell Functionalization in Three-Dimensional Manufacturing Settings for Enhanced Therapeutic Applications.
Front Bioeng Biotechnol. 2021 Feb 12;9:621748. doi: 10.3389/fbioe.2021.621748. eCollection 2021.
5
Engineering the MSC Secretome: A Hydrogel Focused Approach.
Adv Healthc Mater. 2021 Apr;10(7):e2001948. doi: 10.1002/adhm.202001948. Epub 2021 Feb 17.
6
Material Viscoelastic Properties Modulate the Mesenchymal Stem Cell Secretome for Applications in Hematopoietic Recovery.
ACS Biomater Sci Eng. 2017 Dec 11;3(12):3292-3306. doi: 10.1021/acsbiomaterials.7b00644. Epub 2017 Oct 24.
7
Hydrogel mechanics are a key driver of bone formation by mesenchymal stromal cell spheroids.
Biomaterials. 2021 Feb;269:120607. doi: 10.1016/j.biomaterials.2020.120607. Epub 2020 Dec 19.
8
Synthetic Extracellular Matrices as a Toolbox to Tune Stem Cell Secretome.
ACS Appl Mater Interfaces. 2020 Dec 23;12(51):56723-56730. doi: 10.1021/acsami.0c16208. Epub 2020 Dec 11.
10
Shattering barriers toward clinically meaningful MSC therapies.
Sci Adv. 2020 Jul 22;6(30):eaba6884. doi: 10.1126/sciadv.aba6884. eCollection 2020 Jul.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验