Department of Chemical Engineering, University of Wyoming, Laramie, United States of America.
Biomed Mater. 2018 Oct 2;13(6):065012. doi: 10.1088/1748-605X/aadf9a.
The encapsulation of live cells into photopolymerized hydrogel scaffolds has the potential to augment or repair tissue defects, establish versatile regenerative medicine strategies, and be developed as well-defined, yet tunable microenvironments to study fundamental cellular behavior. However, hydrogel fabrication limitations constrain most studies to macroscale hydrogel scaffolds encapsulating millions of cells. These macroscale materials possess regions of heterogeneous photopolymerization conditions and are therefore poor platforms to identify the response of individual cells to encapsulation. Recently, microfluidic droplet-based hydrogel miniaturization and cell encapsulation offers high-throughput, reproducible, and continuous fabrication. Reports of post-encapsulation cell viability, however, vary widely among specific techniques. Furthermore, different cell types often exhibit different level of tolerance to photoencapsulation-induced toxicity. Accordingly, we evaluate the cellular tolerance of various encapsulation techniques and photopolymerization parameters for four mammalian cell types, with potential applications in tissue regeneration, using polyethylene glycol diacrylate or polyethylene glycol norbornene (PEGNB) hydrogels on micro- and macro-length scales. We found PEGNB provides excellent cellular tolerance and supports long-term cell survival by mitigating the deleterious effects of acrylate photopolymerization, which are exacerbated at diminishing volumes. PEGNB, therefore, is an excellent candidate for hydrogel miniaturization. PEGNB hydrogel properties, however, were found to have variable effects on encapsulating different cell candidates. This study could provide guidance for cell encapsulation practices in tissue engineering and regenerative medicine research.
将活细胞封装到光聚合水凝胶支架中具有增强或修复组织缺陷、建立多功能再生医学策略的潜力,并可作为定义明确但可调的微环境来研究基本的细胞行为。然而,水凝胶制造的局限性限制了大多数研究只能使用封装数百万个细胞的宏观水凝胶支架。这些宏观材料具有不均匀的光聚合条件区域,因此不是识别单个细胞对封装反应的良好平台。最近,基于微流控液滴的水凝胶微型化和细胞封装提供了高通量、可重复和连续的制造。然而,关于封装后细胞活力的报告在特定技术之间差异很大。此外,不同的细胞类型通常对光引发毒性的耐受性不同。因此,我们评估了各种细胞封装技术和光聚合参数对四种哺乳动物细胞类型的细胞耐受性,这些细胞类型具有组织再生的潜在应用,使用聚乙二醇二丙烯酸酯或聚乙二醇降冰片烯(PEGNB)水凝胶进行微尺度和宏观尺度的封装。我们发现 PEGNB 通过减轻丙烯酸酯光聚合的有害影响提供了出色的细胞耐受性,并支持长期细胞存活,而在体积减小的情况下,这种影响会加剧。因此,PEGNB 是水凝胶微型化的理想选择。然而,PEGNB 水凝胶的性质对封装不同的候选细胞具有可变的影响。本研究可为组织工程和再生医学研究中的细胞封装实践提供指导。