Suppr超能文献

多种候选细胞类型在 PEGNB/PEGDA 宏观或微尺度水凝胶中光包封的比较细胞相容性。

Comparative cytocompatibility of multiple candidate cell types to photoencapsulation in PEGNB/PEGDA macroscale or microscale hydrogels.

机构信息

Department of Chemical Engineering, University of Wyoming, Laramie, United States of America.

出版信息

Biomed Mater. 2018 Oct 2;13(6):065012. doi: 10.1088/1748-605X/aadf9a.

Abstract

The encapsulation of live cells into photopolymerized hydrogel scaffolds has the potential to augment or repair tissue defects, establish versatile regenerative medicine strategies, and be developed as well-defined, yet tunable microenvironments to study fundamental cellular behavior. However, hydrogel fabrication limitations constrain most studies to macroscale hydrogel scaffolds encapsulating millions of cells. These macroscale materials possess regions of heterogeneous photopolymerization conditions and are therefore poor platforms to identify the response of individual cells to encapsulation. Recently, microfluidic droplet-based hydrogel miniaturization and cell encapsulation offers high-throughput, reproducible, and continuous fabrication. Reports of post-encapsulation cell viability, however, vary widely among specific techniques. Furthermore, different cell types often exhibit different level of tolerance to photoencapsulation-induced toxicity. Accordingly, we evaluate the cellular tolerance of various encapsulation techniques and photopolymerization parameters for four mammalian cell types, with potential applications in tissue regeneration, using polyethylene glycol diacrylate or polyethylene glycol norbornene (PEGNB) hydrogels on micro- and macro-length scales. We found PEGNB provides excellent cellular tolerance and supports long-term cell survival by mitigating the deleterious effects of acrylate photopolymerization, which are exacerbated at diminishing volumes. PEGNB, therefore, is an excellent candidate for hydrogel miniaturization. PEGNB hydrogel properties, however, were found to have variable effects on encapsulating different cell candidates. This study could provide guidance for cell encapsulation practices in tissue engineering and regenerative medicine research.

摘要

将活细胞封装到光聚合水凝胶支架中具有增强或修复组织缺陷、建立多功能再生医学策略的潜力,并可作为定义明确但可调的微环境来研究基本的细胞行为。然而,水凝胶制造的局限性限制了大多数研究只能使用封装数百万个细胞的宏观水凝胶支架。这些宏观材料具有不均匀的光聚合条件区域,因此不是识别单个细胞对封装反应的良好平台。最近,基于微流控液滴的水凝胶微型化和细胞封装提供了高通量、可重复和连续的制造。然而,关于封装后细胞活力的报告在特定技术之间差异很大。此外,不同的细胞类型通常对光引发毒性的耐受性不同。因此,我们评估了各种细胞封装技术和光聚合参数对四种哺乳动物细胞类型的细胞耐受性,这些细胞类型具有组织再生的潜在应用,使用聚乙二醇二丙烯酸酯或聚乙二醇降冰片烯(PEGNB)水凝胶进行微尺度和宏观尺度的封装。我们发现 PEGNB 通过减轻丙烯酸酯光聚合的有害影响提供了出色的细胞耐受性,并支持长期细胞存活,而在体积减小的情况下,这种影响会加剧。因此,PEGNB 是水凝胶微型化的理想选择。然而,PEGNB 水凝胶的性质对封装不同的候选细胞具有可变的影响。本研究可为组织工程和再生医学研究中的细胞封装实践提供指导。

相似文献

5
Composite Hydrogels With Controlled Degradation in 3D Printed Scaffolds.
IEEE Trans Nanobioscience. 2019 Apr;18(2):261-264. doi: 10.1109/TNB.2019.2905510. Epub 2019 Mar 15.
6
Photopolymerization of cell-encapsulating hydrogels: crosslinking efficiency versus cytotoxicity.
Acta Biomater. 2012 May;8(5):1838-48. doi: 10.1016/j.actbio.2011.12.034. Epub 2012 Jan 13.
7
A fast-degrading thiol-acrylate based hydrogel for cranial regeneration.
Biomed Mater. 2017 Mar 17;12(2):025011. doi: 10.1088/1748-605X/aa5f3e.
9
Dissolvable microgel-templated macroporous hydrogels for controlled cell assembly.
Biomater Adv. 2022 Mar;134:112712. doi: 10.1016/j.msec.2022.112712. Epub 2022 Feb 14.
10
Oxygen-Purged Microfluidic Device to Enhance Cell Viability in Photopolymerized PEG Hydrogel Microparticles.
Biomacromolecules. 2016 Jul 11;17(7):2459-65. doi: 10.1021/acs.biomac.6b00597. Epub 2016 Jun 22.

引用本文的文献

1
Recent advances in bioactive hydrogel microspheres: Material engineering strategies and biomedical prospects.
Mater Today Bio. 2025 Feb 25;31:101614. doi: 10.1016/j.mtbio.2025.101614. eCollection 2025 Apr.
3
Single-Cell Microgels for Diagnostics and Therapeutics.
Adv Funct Mater. 2021 Oct 26;31(44). doi: 10.1002/adfm.202009946. Epub 2021 Mar 26.
4
Microfluidic Formulation of Topological Hydrogels for Microtissue Engineering.
Chem Rev. 2022 Nov 23;122(22):16839-16909. doi: 10.1021/acs.chemrev.1c00798. Epub 2022 Sep 15.

本文引用的文献

1
Hydrogels with Dual Gradients of Mechanical and Biochemical Cues for Deciphering Cell-Niche Interactions.
ACS Biomater Sci Eng. 2016 May 9;2(5):845-852. doi: 10.1021/acsbiomaterials.6b00074. Epub 2016 Apr 11.
2
Encapsulation and Fluidization Maintains the Viability and Glucose Sensitivity of Beta-Cells.
ACS Biomater Sci Eng. 2017 Aug 14;3(8):1750-1757. doi: 10.1021/acsbiomaterials.7b00191. Epub 2017 Jul 3.
3
4
Synthetic hydrogel platform for three-dimensional culture of embryonic stem cell-derived motor neurons.
Biomater Sci. 2013 May 2;1(5):460-469. doi: 10.1039/c3bm00166k. Epub 2013 Jan 24.
7
Modulating stem cell-chondrocyte interactions for cartilage repair using combinatorial extracellular matrix-containing hydrogels.
J Mater Chem B. 2016 Dec 21;4(47):7641-7650. doi: 10.1039/c6tb01583b. Epub 2016 Nov 16.
8
Dual mode gelation behavior of silk fibroin microgel embedded poly(ethylene glycol) hydrogels.
J Mater Chem B. 2016 Jul 14;4(26):4574-4584. doi: 10.1039/c6tb00896h. Epub 2016 Jun 16.
9
Designing compartmentalized hydrogel microparticles for cell encapsulation and scalable 3D cell culture.
J Mater Chem B. 2015 Jan 21;3(3):353-360. doi: 10.1039/c4tb01735h. Epub 2014 Dec 4.
10
Cytocompatible cell encapsulation via hydrogel photopolymerization in microfluidic emulsion droplets.
Biomicrofluidics. 2017 Jul 12;11(4):044102. doi: 10.1063/1.4993122. eCollection 2017 Jul.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验