Mansha Shampy, Moitra Parikshit, Xu Xuewu, Mass Tobias W W, Veetil Rasna Maruthiyodan, Liang Xinan, Li Shi-Qiang, Paniagua-Domínguez Ramón, Kuznetsov Arseniy I
Institute of Materials Research and Engineering, A*STAR (Agency for Science, Technology and Research), 138634, Singapore, Singapore.
Light Sci Appl. 2022 May 17;11(1):141. doi: 10.1038/s41377-022-00832-6.
Spatial light modulators (SLMs) are the most relevant technology for dynamic wavefront manipulation. They find diverse applications ranging from novel displays to optical and quantum communications. Among commercial SLMs for phase modulation, Liquid Crystal on Silicon (LCoS) offers the smallest pixel size and, thus, the most precise phase mapping and largest field of view (FOV). Further pixel miniaturization, however, is not possible in these devices due to inter-pixel cross-talks, which follow from the high driving voltages needed to modulate the thick liquid crystal (LC) cells that are necessary for full phase control. Newly introduced metasurface-based SLMs provide means for pixel miniaturization by modulating the phase via resonance tuning. These devices, however, are intrinsically monochromatic, limiting their use in applications requiring multi-wavelength operation. Here, we introduce a novel design allowing small pixel and multi-spectral operation. Based on LC-tunable Fabry-Perot nanocavities engineered to support multiple resonances across the visible range (including red, green and blue wavelengths), our design provides continuous 2π phase modulation with high reflectance at each of the operating wavelengths. Experimentally, we realize a device with 96 pixels (1 μm pitch) that can be individually addressed by electrical biases. Using it, we first demonstrate multi-spectral programmable beam steering with FOV18° and absolute efficiencies exceeding 40%. Then, we reprogram the device to achieve multi-spectral lensing with tunable focal distance and efficiencies ~27%. Our design paves the way towards a new class of SLM for future applications in displays, optical computing and beyond.
空间光调制器(SLM)是动态波前操纵最相关的技术。它们有多种应用,从新型显示器到光学和量子通信。在用于相位调制的商业SLM中,硅基液晶(LCoS)提供最小的像素尺寸,因此具有最精确的相位映射和最大的视场(FOV)。然而,由于像素间串扰,这些器件无法进一步缩小像素尺寸,像素间串扰源于调制厚液晶(LC)单元所需的高驱动电压,而厚液晶单元是实现全相位控制所必需的。新推出的基于超表面的SLM通过共振调谐调制相位,为像素小型化提供了手段。然而,这些器件本质上是单色的,限制了它们在需要多波长操作的应用中的使用。在这里,我们介绍一种新颖的设计,允许小像素和多光谱操作。基于经过工程设计以支持整个可见光范围(包括红色、绿色和蓝色波长)内多个共振的LC可调谐法布里-珀罗纳米腔,我们的设计在每个工作波长处提供具有高反射率的连续2π相位调制。通过实验,我们实现了一种具有96个像素(间距约为1μm)的器件,该器件可以通过电偏置单独寻址。使用它,我们首先展示了视场约为18°且绝对效率超过40%的多光谱可编程光束转向。然后,我们对该器件进行重新编程,以实现焦距可调且效率约为27%的多光谱透镜成像。我们的设计为未来在显示器、光学计算及其他领域的应用中开辟了一类新型SLM的道路。