Abdollahramezani Sajjad, Hemmatyar Omid, Taghinejad Mohammad, Taghinejad Hossein, Krasnok Alex, Eftekhar Ali A, Teichrib Christian, Deshmukh Sanchit, El-Sayed Mostafa A, Pop Eric, Wuttig Matthias, Alù Andrea, Cai Wenshan, Adibi Ali
School of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, GA, 30332, USA.
Photonics Initiative, Advanced Science Research Center, City University of New York, New York, NY, 10031, USA.
Nat Commun. 2022 Mar 30;13(1):1696. doi: 10.1038/s41467-022-29374-6.
Phase-change materials (PCMs) offer a compelling platform for active metaoptics, owing to their large index contrast and fast yet stable phase transition attributes. Despite recent advances in phase-change metasurfaces, a fully integrable solution that combines pronounced tuning measures, i.e., efficiency, dynamic range, speed, and power consumption, is still elusive. Here, we demonstrate an in situ electrically driven tunable metasurface by harnessing the full potential of a PCM alloy, GeSbTe (GST), to realize non-volatile, reversible, multilevel, fast, and remarkable optical modulation in the near-infrared spectral range. Such a reprogrammable platform presents a record eleven-fold change in the reflectance (absolute reflectance contrast reaching 80%), unprecedented quasi-continuous spectral tuning over 250 nm, and switching speed that can potentially reach a few kHz. Our scalable heterostructure architecture capitalizes on the integration of a robust resistive microheater decoupled from an optically smart metasurface enabling good modal overlap with an ultrathin layer of the largest index contrast PCM to sustain high scattering efficiency even after several reversible phase transitions. We further experimentally demonstrate an electrically reconfigurable phase-change gradient metasurface capable of steering an incident light beam into different diffraction orders. This work represents a critical advance towards the development of fully integrable dynamic metasurfaces and their potential for beamforming applications.
相变材料(PCM)因其大的折射率对比度以及快速且稳定的相变特性,为有源超光学提供了一个极具吸引力的平台。尽管相变超表面最近取得了进展,但一种将显著的调谐措施(即效率、动态范围、速度和功耗)结合起来的完全可集成解决方案仍然难以实现。在此,我们通过充分利用PCM合金GeSbTe(GST)的全部潜力,展示了一种原位电驱动可调谐超表面,以在近红外光谱范围内实现非易失性、可逆、多级、快速且显著的光学调制。这样一个可重新编程的平台在反射率上呈现出创纪录的11倍变化(绝对反射率对比度达到80%),在超过250nm的范围内实现了前所未有的准连续光谱调谐,并且开关速度有可能达到几千赫兹。我们可扩展的异质结构架构利用了与光学智能超表面解耦的坚固电阻微加热器的集成,使得与最大折射率对比度的PCM超薄层具有良好的模式重叠,即使经过多次可逆相变后仍能保持高散射效率。我们进一步通过实验证明了一种电可重构的相变梯度超表面,它能够将入射光束引导到不同的衍射级次。这项工作代表了朝着完全可集成动态超表面的发展及其在波束形成应用中的潜力迈出的关键一步。