Department of Molecular Biology, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany.
Structural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany.
Nat Struct Mol Biol. 2022 May;29(5):493-501. doi: 10.1038/s41594-022-00768-w. Epub 2022 May 17.
Throughout the genome, nucleosomes often form regular arrays that differ in nucleosome repeat length (NRL), occupancy of linker histone H1 and transcriptional activity. Here, we report cryo-EM structures of human H1-containing tetranucleosome arrays with four physiologically relevant NRLs. The structures show a zig-zag arrangement of nucleosomes, with nucleosomes 1 and 3 forming a stack. H1 binding to stacked nucleosomes depends on the NRL, whereas H1 always binds to the non-stacked nucleosomes 2 and 4. Short NRLs lead to altered trajectories of linker DNA, and these altered trajectories sterically impair H1 binding to the stacked nucleosomes in our structures. As the NRL increases, linker DNA trajectories relax, enabling H1 contacts and binding. Our results provide an explanation for why arrays with short NRLs are depleted of H1 and suited for transcription, whereas arrays with long NRLs show full H1 occupancy and can form transcriptionally silent heterochromatin regions.
在整个基因组中,核小体经常形成具有不同核小体重复长度 (NRL)、连接组蛋白 H1 占有率和转录活性的规则阵列。在这里,我们报告了含有人类 H1 的四联体核小体阵列的冷冻电镜结构,这些阵列具有四种生理相关的 NRL。这些结构显示核小体呈之字形排列,核小体 1 和 3 形成一个堆叠。H1 与堆叠核小体的结合取决于 NRL,而 H1 总是与非堆叠核小体 2 和 4 结合。短 NRL 导致连接 DNA 的轨迹发生改变,这些改变的轨迹在我们的结构中阻碍了 H1 与堆叠核小体的结合。随着 NRL 的增加,连接 DNA 的轨迹得到放松,从而使 H1 能够接触和结合。我们的结果为为什么具有短 NRL 的阵列缺乏 H1 且适合转录,而具有长 NRL 的阵列显示完全的 H1 占有率并能形成转录沉默的异染色质区域提供了一个解释。