Sale Matthew J, Balmanno Kathryn, Cook Simon J
Signalling Programme, The Babraham Institute, Babraham Research Campus, Cambridge CB22 3AT, UK.
Cancer Drug Resist. 2019 Jun 19;2(2):365-380. doi: 10.20517/cdr.2019.14. eCollection 2019.
MEK1/2 inhibitors are clinically approved for the treatment of BRAF-mutant melanoma, where they are used in combination with BRAF inhibitors, and are undergoing evaluation in other malignancies. Acquired resistance to MEK1/2 inhibitors, including selumetinib (AZD6244/ARRY-142866), can arise through amplification of BRAF or KRAS to reinstate ERK1/2 signalling. We have found that BRAF amplification and selumetinib resistance are fully reversible following drug withdrawal. This is because resistant cells with BRAF amplification become addicted to selumetinib to maintain a precise level of ERK1/2 signalling (2%-3% of total ERK1/2 active), that is optimal for cell proliferation and survival. Selumetinib withdrawal drives ERK1/2 activation outside of this critical "sweet spot" (~20%-30% of ERK1/2 active) resulting in a p57-dependent G1 cell cycle arrest and senescence or expression of NOXA and cell death with features of autophagy; these terminal responses select against cells with amplified BRAF. ERK1/2-dependent p57 expression is required for loss of BRAF amplification and determines the rate of reversal of selumetinib resistance. Growth of selumetinib-resistant cells with BRAF amplification as tumour xenografts also requires the presence of selumetinib to "clamp" ERK1/2 activity within the sweet spot. Thus, BRAF amplification confers a selective disadvantage or "fitness deficit" during drug withdrawal, providing a rationale for intermittent dosing to forestall resistance. Remarkably, selumetinib resistance driven by KRAS amplification/upregulation is not reversible. In these cells ERK1/2 reactivation does not inhibit proliferation but drives a ZEB1-dependent epithelial-to-mesenchymal transition that increases cell motility and promotes resistance to traditional chemotherapy agents. Our results reveal that the emergence of drug-addicted, MEKi-resistant cells, and the opportunity this may afford for intermittent dosing schedules ("drug holidays"), may be determined by the nature of the amplified driving oncogene (BRAF . KRAS), further exemplifying the difficulties of targeting KRAS mutant tumour cells.
MEK1/2抑制剂已获临床批准用于治疗BRAF突变型黑色素瘤,在该疾病中它们与BRAF抑制剂联合使用,并且正在其他恶性肿瘤中进行评估。对MEK1/2抑制剂(包括司美替尼,AZD6244/ARRY-142866)产生的获得性耐药,可通过BRAF或KRAS扩增来恢复ERK1/2信号传导而出现。我们发现,在停药后BRAF扩增和司美替尼耐药是完全可逆的。这是因为具有BRAF扩增的耐药细胞对司美替尼产生依赖,以维持ERK1/2信号传导的精确水平(占总ERK1/2活性的2%-3%),这对于细胞增殖和存活是最佳的。停用司美替尼会使ERK1/2激活超出这个关键的“最佳范围”(占ERK1/2活性的约20%-30%),导致p57依赖的G1期细胞周期停滞和衰老,或导致NOXA表达及具有自噬特征的细胞死亡;这些终末反应会淘汰具有BRAF扩增的细胞。ERK1/2依赖的p57表达是BRAF扩增丧失所必需的,并决定了司美替尼耐药逆转的速度。具有BRAF扩增的司美替尼耐药细胞作为肿瘤异种移植物生长时,也需要存在司美替尼来将ERK1/2活性“钳制”在最佳范围内。因此,BRAF扩增在停药期间会带来选择性劣势或“适应性缺陷”,这为间歇性给药以预防耐药提供了理论依据。值得注意的是,由KRAS扩增/上调驱动的司美替尼耐药是不可逆的。在这些细胞中,ERK1/2重新激活不会抑制增殖,而是驱动ZEB1依赖的上皮-间质转化,增加细胞运动性并促进对传统化疗药物的耐药。我们的结果表明,成瘾性、对MEK抑制剂耐药细胞的出现,以及这可能为间歇性给药方案(“药物假期”)提供的机会,可能由扩增的驱动癌基因(BRAF > KRAS)的性质决定,这进一步例证了靶向KRAS突变肿瘤细胞的困难。