Institut für Populationsgenetik, Vetmeduni Vienna, Vienna, Austria.
Vienna Graduate School of Population Genetics, Vetmeduni Vienna, Vienna, Austria.
PLoS Biol. 2019 Feb 4;17(2):e3000128. doi: 10.1371/journal.pbio.3000128. eCollection 2019 Feb.
The genetic architecture of adaptive traits is of key importance to predict evolutionary responses. Most adaptive traits are polygenic-i.e., result from selection on a large number of genetic loci-but most molecularly characterized traits have a simple genetic basis. This discrepancy is best explained by the difficulty in detecting small allele frequency changes (AFCs) across many contributing loci. To resolve this, we use laboratory natural selection to detect signatures for selective sweeps and polygenic adaptation. We exposed 10 replicates of a Drosophila simulans population to a new temperature regime and uncovered a polygenic architecture of an adaptive trait with high genetic redundancy among beneficial alleles. We observed convergent responses for several phenotypes-e.g., fitness, metabolic rate, and fat content-and a strong polygenic response (99 selected alleles; mean s = 0.059). However, each of these selected alleles increased in frequency only in a subset of the evolving replicates. We discerned different evolutionary paradigms based on the heterogeneous genomic patterns among replicates. Redundancy and quantitative trait (QT) paradigms fitted the experimental data better than simulations assuming independent selective sweeps. Our results show that natural D. simulans populations harbor a vast reservoir of adaptive variation facilitating rapid evolutionary responses using multiple alternative genetic pathways converging at a new phenotypic optimum. This key property of beneficial alleles requires the modification of testing strategies in natural populations beyond the search for convergence on the molecular level.
适应性状的遗传结构对预测进化反应至关重要。大多数适应性状是多基因的,即由于大量遗传位点的选择而产生,但大多数分子特征明确的性状具有简单的遗传基础。这种差异最好用检测许多贡献基因座上的小等位基因频率变化 (AFCs) 的困难来解释。为了解决这个问题,我们利用实验室自然选择来检测选择清扫和多基因适应的特征。我们将 10 个重复的果蝇 simulans 种群暴露在新的温度环境中,发现了一个适应性状的多基因结构,其中有益等位基因具有很高的遗传冗余性。我们观察到几个表型的趋同反应,例如适应性、代谢率和脂肪含量,以及强烈的多基因反应(99 个选择等位基因;平均 s = 0.059)。然而,这些选择等位基因中的每一个仅在进化复制的一部分中增加了频率。我们根据复制之间不同的基因组模式区分了不同的进化范例。冗余和数量性状(QT)范例比模拟独立选择清扫更适合实验数据。我们的结果表明,自然果蝇 simulans 种群蕴藏着大量的适应性变异,通过多种替代的遗传途径迅速进化,这些途径汇聚到一个新的表型最优状态。有益等位基因的这一关键特性需要在自然种群中修改测试策略,而不仅仅是在分子水平上寻找趋同。