Hopkins Marine Station of Stanford University, Pacific Grove, California, USA.
Department of Biology, Stanford University, Stanford, California, USA.
Glob Chang Biol. 2022 Aug;28(15):4558-4576. doi: 10.1111/gcb.16265. Epub 2022 Jun 9.
Anthropogenic stressors are predicted to alter biodiversity and ecosystem functioning worldwide. However, scaling up from species to ecosystem responses poses a challenge, as species and functional groups can exhibit different capacities to adapt, acclimate, and compensate under changing environments. We used a naturally acidified seagrass ecosystem (the endemic Mediterranean Posidonia oceanica) as a model system to examine how ocean acidification (OA) modifies the community structure and functioning of plant detritivores, which play vital roles in the coastal nutrient cycling and food web dynamics. In seagrass beds associated with volcanic CO vents (Ischia, Italy), we quantified the effects of OA on seagrass decomposition by deploying litterbags in three distinct pH zones (i.e., ambient, low, extreme low pH), which differed in the mean and variability of seawater pH. We replicated the study in two discrete vents for 117 days (litterbags sampled on day 5, 10, 28, 55, and 117). Acidification reduced seagrass detritivore richness and diversity through the loss of less abundant, pH-sensitive species but increased the abundance of the dominant detritivore (amphipod Gammarella fucicola). Such compensatory shifts in species abundance caused more than a threefold increase in the total detritivore abundance in lower pH zones. These community changes were associated with increased consumption (52%-112%) and decay of seagrass detritus (up to 67% faster decomposition rate for the slow-decaying, refractory detrital pool) under acidification. Seagrass detritus deployed in acidified zones showed increased N content and decreased C:N ratio, indicating that altered microbial activities under OA may have affected the decay process. The findings suggest that OA could restructure consumer assemblages and modify plant decomposition in blue carbon ecosystems, which may have important implications for carbon sequestration, nutrient recycling, and trophic transfer. Our study highlights the importance of within-community response variability and compensatory processes in modulating ecosystem functions under extreme global change scenarios.
人为压力预计将改变全球的生物多样性和生态系统功能。然而,将物种层面的响应扩展到生态系统层面存在挑战,因为在变化的环境下,物种和功能群可能表现出不同的适应、驯化和补偿能力。我们使用一个自然酸化的海草生态系统(特有地中海海草 Posidonia oceanica)作为模型系统,研究海洋酸化(OA)如何改变植物碎屑分解者的群落结构和功能,这些分解者在沿海营养循环和食物网动态中起着至关重要的作用。在与火山 CO 喷口相关的海草床中(意大利伊斯基亚岛),我们通过在三个不同的 pH 区域(即环境、低、极低 pH)中部署凋落物袋来量化 OA 对海草分解的影响,这三个区域的海水 pH 值平均值和变异性不同。我们在两个离散的喷口重复了这项研究,持续了 117 天(在第 5、10、28、55 和 117 天采样凋落物袋)。酸化通过丧失较少丰富、对 pH 敏感的物种,降低了海草碎屑分解者的丰富度和多样性,但增加了优势碎屑分解者(端足目动物 Gammarella fucicola)的丰度。这种物种丰度的补偿性变化导致在较低 pH 区域,总碎屑分解者的丰度增加了三倍以上。这些群落变化与酸化下海草碎屑的增加消耗(52%-112%)和降解(对于慢速降解、难降解的碎屑库,分解速率加快了 67%)有关。在酸化区域部署的海草碎屑表现出更高的 N 含量和更低的 C:N 比,表明 OA 下微生物活性的改变可能影响了降解过程。研究结果表明,OA 可能重构消费者组合,并改变蓝碳生态系统中植物的分解,这可能对碳封存、养分循环和营养转移有重要意义。我们的研究强调了在极端全球变化情景下,群落内响应变异性和补偿过程对调节生态系统功能的重要性。