Real Jardín Botánico (RJB), CSIC, Plaza de Murillo, 28014 Madrid, Spain.
ISEM, Université de Montpellier, CNRS, IRD, EPHE, Place Eugène Bataillon, 34095 Montpellier, France.
Syst Biol. 2022 Oct 12;71(6):1524-1540. doi: 10.1093/sysbio/syac036.
The Ornstein-Uhlenbeck (OU) model is widely used in comparative phylogenetic analyses to study the evolution of quantitative traits. It has been applied to various purposes, including the estimation of the strength of selection or ancestral traits, inferring the existence of several selective regimes, or accounting for phylogenetic correlation in regression analyses. Most programs implementing statistical inference under the OU model have resorted to maximum-likelihood (ML) inference until the recent advent of Bayesian methods. A series of issues have been noted for ML inference using the OU model, including parameter nonidentifiability. How these problems translate to a Bayesian framework has not been studied much to date and is the focus of the present article. In particular, I aim to assess the impact of the choice of priors on parameter estimates. I show that complex interactions between parameters may cause the priors for virtually all parameters to impact inference in sometimes unexpected ways, whatever the purpose of inference. I specifically draw attention to the difficulty of setting the prior for the selection strength parameter, a task to be undertaken with much caution. I particularly address investigators who do not have precise prior information, by highlighting the fact that the effect of the prior for one parameter is often only visible through its impact on the estimate of another parameter. Finally, I propose a new parameterization of the OU model that can be helpful when prior information about the parameters is not available. [Bayesian inference; Brownian motion; Ornstein-Uhlenbeck model; phenotypic evolution; phylogenetic comparative methods; prior distribution; quantitative trait evolution.].
奥恩斯坦-乌伦贝克(OU)模型在比较系统发育分析中被广泛用于研究数量性状的进化。它已被应用于各种目的,包括估计选择或祖先性状的强度,推断存在几种选择制度,或在回归分析中解释系统发育相关性。直到最近贝叶斯方法的出现,大多数实施 OU 模型下统计推断的程序都依赖于最大似然(ML)推断。已经注意到使用 OU 模型进行 ML 推断的一系列问题,包括参数不可识别性。这些问题如何转化为贝叶斯框架,到目前为止还没有得到太多研究,这也是本文的重点。特别是,我旨在评估先验选择对参数估计的影响。我表明,参数之间的复杂相互作用可能导致几乎所有参数的先验以有时出乎意料的方式影响推断,无论推断的目的是什么。我特别提请注意为选择强度参数设置先验的困难,这是一项需要谨慎进行的任务。我特别关注那些没有精确先验信息的研究人员,强调一个参数的先验的影响往往只能通过其对另一个参数的估计的影响来显现。最后,我提出了 OU 模型的一种新的参数化,当没有关于参数的先验信息时,它可能会有所帮助。[贝叶斯推断;布朗运动;奥恩斯坦-乌伦贝克模型;表型进化;系统发育比较方法;先验分布;数量性状进化。]