Wang Peng-Biao, Truhlar Donald G, Xia Yu, Long Bo
Department of Physics, Guizhou University, Guiyang, 550025, China.
Department of Chemistry, Chemical Theory Center, and Supercomputing Institute, University of Minnesota, Minneapolis, Minnesota 55455-0431, USA.
Phys Chem Chem Phys. 2022 Jun 1;24(21):13066-13073. doi: 10.1039/d2cp01118b.
Criegee intermediates are important oxidants produced in the ozonolysis of alkenes in the atmosphere. Quantitative kinetics of the reactions of Criegee intermediates are required for atmospheric modeling. However, the experimental studies do not cover the full relevant range of temperature and pressure. Here we report the quantitative kinetics of CHOO + CHC(O)CH by using our recently developed dual strategy that combines coupled cluster theory with high excitation levels for conventional transition state theory and well validated levels of density functional theory for direct dynamics calculations using canonical variational transition theory including tunneling. We find that the W3X-L//DF-CCSD(T)-F12b/jun-cc-pVDZ electronic structure method can be used to obtain quantitative kinetics of the CHOO + CHC(O)CH reaction. Whereas previous investigations considered a one-step mechanistic pathway, we find that the CHOO + CHC(O)CH reaction occurs in a stepwise manner. This has implications for the modeling of Criegee-intermediate reactions with other ketones and with aldehydes. In the kinetics calculations, we show that recrossing effects of the conventional transition state are negligible for determining the rate constant of CHOO + CHC(O)CH. The present findings reveal that the rate ratio between CHOO + CHC(O)CH and OH + CHC(O)CH has a significant negative dependence on temperature such that the CHOO + CHC(O)CH reaction can contribute as a significant sink for atmospheric CHC(O)CH at low temperature. The present findings should have broad implications in understanding the reactions of Criegee intermediates with carbonyl compounds and ketones in the atmosphere.
克里吉中间体是大气中烯烃臭氧分解产生的重要氧化剂。大气模型需要克里吉中间体反应的定量动力学。然而,实验研究并未涵盖温度和压力的全部相关范围。在此,我们报告了CHOO + CHC(O)CH反应的定量动力学,采用了我们最近开发的双重策略,该策略将耦合簇理论与用于传统过渡态理论的高激发水平相结合,并将经过充分验证的密度泛函理论水平用于使用包含隧穿效应的正则变分过渡态理论进行直接动力学计算。我们发现W3X-L//DF-CCSD(T)-F12b/jun-cc-pVDZ电子结构方法可用于获得CHOO + CHC(O)CH反应的定量动力学。尽管先前的研究考虑了一步反应机理途径,但我们发现CHOO + CHC(O)CH反应以分步方式发生。这对克里吉中间体与其他酮类和醛类反应的建模具有重要意义。在动力学计算中,我们表明传统过渡态的再交叉效应对于确定CHOO + CHC(O)CH的速率常数可忽略不计。目前的研究结果表明,CHOO + CHC(O)CH与OH + CHC(O)CH之间的速率比与温度呈显著负相关,因此在低温下CHOO + CHC(O)CH反应可作为大气中CHC(O)CH的重要汇。目前的研究结果对于理解大气中克里吉中间体与羰基化合物和酮类的反应应具有广泛的意义。