Suppr超能文献

利用全基因组测序探索自发性冠状动脉夹层的遗传结构。

Exploring the Genetic Architecture of Spontaneous Coronary Artery Dissection Using Whole-Genome Sequencing.

机构信息

Victor Chang Cardiac Research Institute, Darlinghurst, NSW, Australia (I.T., S.H., S.E.I., E.R., S.M., M.T., K.M., C.M.Y.W., P.-C.H., K.J., D.T.H., M.B., L.M.-C., J.C.K., S.L.D., D.F., D.W.M.M., R.M.G., E.G.).

UNSW Sydney, Kensington, NSW, Australia (S.E.I., E.R., L.M.-C., J.C.K., S.L.D., D.F., D.W.M.M., R.M.G., E.G.).

出版信息

Circ Genom Precis Med. 2022 Aug;15(4):e003527. doi: 10.1161/CIRCGEN.121.003527. Epub 2022 May 18.

Abstract

BACKGROUND

Spontaneous coronary artery dissection (SCAD) is a cause of acute coronary syndrome that predominantly affects women. Its pathophysiology remains unclear but connective tissue disorders (CTD) and other vasculopathies have been observed in many SCAD patients. A genetic component for SCAD is increasingly appreciated, although few genes have been robustly implicated. We sought to clarify the genetic cause of SCAD using targeted and genome-wide methods in a cohort of sporadic cases to identify both common and rare disease-associated variants.

METHODS

A cohort of 91 unrelated sporadic SCAD cases was investigated for rare, deleterious variants in genes associated with either SCAD or CTD, while new candidate genes were sought using rare variant collapsing analysis and identification of novel loss-of-function variants in genes intolerant to such variation. Finally, 2 SCAD polygenic risk scores were applied to assess the contribution of common variants.

RESULTS

We identified 10 cases with at least one rare, likely disease-causing variant in CTD-associated genes, although only one had a CTD phenotype. No genes were significantly associated with SCAD from genome-wide collapsing analysis, however, enrichment for TGF (transforming growth factor)-β signaling pathway genes was found with analysis of 24 genes harboring novel loss-of-function variants. Both polygenic risk scores demonstrated that sporadic SCAD cases have a significantly elevated genetic SCAD risk compared with controls.

CONCLUSIONS

SCAD shares some genetic overlap with CTD, even in the absence of any major CTD phenotype. Consistent with a complex genetic architecture, SCAD patients also have a higher burden of common variants than controls.

摘要

背景

自发性冠状动脉夹层(SCAD)是急性冠状动脉综合征的一个病因,主要影响女性。其病理生理学仍不清楚,但在许多 SCAD 患者中观察到结缔组织疾病(CTD)和其他血管病变。越来越多的人认为 SCAD 存在遗传因素,尽管很少有基因被明确涉及。我们试图通过对散发性病例的队列进行靶向和全基因组方法,来阐明 SCAD 的遗传原因,以确定常见和罕见的疾病相关变体。

方法

对 91 例无相关散发性 SCAD 病例进行了研究,以寻找与 SCAD 或 CTD 相关的基因中罕见的、有害的变体,同时使用罕见变体折叠分析和识别不能容忍此类变异的基因中的新的功能丧失变体来寻找新的候选基因。最后,应用了 2 个 SCAD 多基因风险评分来评估常见变异的贡献。

结果

我们在 CTD 相关基因中发现了 10 例至少有一个罕见的、可能导致疾病的变体的病例,尽管只有 1 例有 CTD 表型。然而,全基因组折叠分析未发现与 SCAD 显著相关的基因,但对含有新功能丧失变体的 24 个基因的分析发现了 TGF(转化生长因子)-β信号通路基因的富集。两个多基因风险评分都表明,与对照组相比,散发性 SCAD 病例的遗传 SCAD 风险明显升高。

结论

即使没有明显的 CTD 表型,SCAD 与 CTD 也有一些遗传重叠。与复杂的遗传结构一致,SCAD 患者的常见变异负担也高于对照组。

相似文献

1
Exploring the Genetic Architecture of Spontaneous Coronary Artery Dissection Using Whole-Genome Sequencing.
Circ Genom Precis Med. 2022 Aug;15(4):e003527. doi: 10.1161/CIRCGEN.121.003527. Epub 2022 May 18.
2
Spontaneous Coronary Artery Dissection: Insights on Rare Genetic Variation From Genome Sequencing.
Circ Genom Precis Med. 2020 Dec;13(6):e003030. doi: 10.1161/CIRCGEN.120.003030. Epub 2020 Oct 30.
3
Polygenic Risk in Families With Spontaneous Coronary Artery Dissection.
JAMA Cardiol. 2024 Mar 1;9(3):254-261. doi: 10.1001/jamacardio.2023.5194.
4
Burden of Rare Genetic Variants in Spontaneous Coronary Artery Dissection With High-risk Features.
JAMA Cardiol. 2022 Oct 1;7(10):1045-1055. doi: 10.1001/jamacardio.2022.2970.
5
Rare Missense Variants in TLN1 Are Associated With Familial and Sporadic Spontaneous Coronary Artery Dissection.
Circ Genom Precis Med. 2019 Apr;12(4):e002437. doi: 10.1161/CIRCGEN.118.002437. Epub 2019 Mar 19.
6
Identification of Susceptibility Loci for Spontaneous Coronary Artery Dissection.
JAMA Cardiol. 2020 Aug 1;5(8):929-938. doi: 10.1001/jamacardio.2020.0872.
7
Rare loss-of-function mutations of PTGIR are enriched in fibromuscular dysplasia.
Cardiovasc Res. 2021 Mar 21;117(4):1154-1165. doi: 10.1093/cvr/cvaa161.
8
From Atherosclerosis to Spontaneous Coronary Artery Dissection: Defining a Clinical and Genetic Risk Spectrum for Myocardial Infarction.
Curr Atheroscler Rep. 2024 Jul;26(7):331-340. doi: 10.1007/s11883-024-01208-4. Epub 2024 May 18.
9
Fibrillar Collagen Variants in Spontaneous Coronary Artery Dissection.
JAMA Cardiol. 2022 Apr 1;7(4):396-406. doi: 10.1001/jamacardio.2022.0001.
10
Advancements in the Genetics of Spontaneous Coronary Artery Dissection.
Curr Cardiol Rep. 2023 Dec;25(12):1735-1743. doi: 10.1007/s11886-023-01989-1. Epub 2023 Nov 18.

引用本文的文献

2
Spontaneous Coronary Artery Dissection and a Family History of Aortic Dissection: A Genetic Association Study.
J Am Heart Assoc. 2025 Apr 15;14(8):e037921. doi: 10.1161/JAHA.124.037921. Epub 2025 Apr 7.
3
Genetics architecture of spontaneous coronary artery dissection in an Italian cohort.
Front Cardiovasc Med. 2024 Nov 25;11:1486273. doi: 10.3389/fcvm.2024.1486273. eCollection 2024.
4
Sex and Gender Differences in Cardiovascular Disease: A Review of Spontaneous Coronary Artery Dissection.
US Cardiol. 2023 Oct 9;17:e15. doi: 10.15420/usc.2023.02. eCollection 2023.
5
Integrative gene regulatory network analysis discloses key driver genes of fibromuscular dysplasia.
Nat Cardiovasc Res. 2024 Sep;3(9):1098-1122. doi: 10.1038/s44161-024-00533-w. Epub 2024 Sep 13.
6
Variants in Spontaneous Coronary Artery Dissection.
JACC Adv. 2024 May 20;3(7):100986. doi: 10.1016/j.jacadv.2024.100986. eCollection 2024 Jul.
7
Spontaneous coronary artery dissection and fibromuscular dysplasia: insights into recent developments.
Front Cardiovasc Med. 2024 May 31;11:1409278. doi: 10.3389/fcvm.2024.1409278. eCollection 2024.
8
From Atherosclerosis to Spontaneous Coronary Artery Dissection: Defining a Clinical and Genetic Risk Spectrum for Myocardial Infarction.
Curr Atheroscler Rep. 2024 Jul;26(7):331-340. doi: 10.1007/s11883-024-01208-4. Epub 2024 May 18.
9
Spontaneous Coronary Artery Dissection and Fibromuscular Dysplasia: A Case Series and Genetic Links.
Cureus. 2024 Feb 13;16(2):e54105. doi: 10.7759/cureus.54105. eCollection 2024 Feb.
10
Spontaneous Coronary Artery Dissection in Clinical Practice: Pathophysiology and Therapeutic Approaches.
Medicina (Kaunas). 2024 Jan 26;60(2):217. doi: 10.3390/medicina60020217.

本文引用的文献

2
Spontaneous Coronary Artery Dissection: Insights on Rare Genetic Variation From Genome Sequencing.
Circ Genom Precis Med. 2020 Dec;13(6):e003030. doi: 10.1161/CIRCGEN.120.003030. Epub 2020 Oct 30.
4
Spontaneous Coronary Artery Dissection and Fibromuscular Dysplasia: Vasculopathies With a Predilection for Women.
Heart Lung Circ. 2021 Jan;30(1):27-35. doi: 10.1016/j.hlc.2020.05.110. Epub 2020 Jul 6.
5
Transcript expression-aware annotation improves rare variant interpretation.
Nature. 2020 May;581(7809):452-458. doi: 10.1038/s41586-020-2329-2. Epub 2020 May 27.
6
The mutational constraint spectrum quantified from variation in 141,456 humans.
Nature. 2020 May;581(7809):434-443. doi: 10.1038/s41586-020-2308-7. Epub 2020 May 27.
7
Identification of Susceptibility Loci for Spontaneous Coronary Artery Dissection.
JAMA Cardiol. 2020 Aug 1;5(8):929-938. doi: 10.1001/jamacardio.2020.0872.
8
Spontaneous Coronary Artery Dissection in Females With the Fragile X Premutation.
JACC Case Rep. 2020 Jan;2(1):40-44. doi: 10.1016/j.jaccas.2019.11.058. Epub 2020 Jan 15.
9
The Medical Genome Reference Bank contains whole genome and phenotype data of 2570 healthy elderly.
Nat Commun. 2020 Jan 23;11(1):435. doi: 10.1038/s41467-019-14079-0.
10
Rare genetic variants in patients with cervical artery dissection.
Eur Stroke J. 2019 Dec;4(4):355-362. doi: 10.1177/2396987319861869. Epub 2019 Jul 12.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验