Suppr超能文献

用于差异表达分析的多变量统计检验。

A multivariate statistical test for differential expression analysis.

机构信息

Department of Economics, Business and Statistics, University of Palermo, Palermo, Italy.

Institute for Biomedical Research and Innovation, National Research Council, Palermo, Italy.

出版信息

Sci Rep. 2022 May 18;12(1):8265. doi: 10.1038/s41598-022-12246-w.

Abstract

Statistical tests of differential expression usually suffer from two problems. Firstly, their statistical power is often limited when applied to small and skewed data sets. Secondly, gene expression data are usually discretized by applying arbitrary criteria to limit the number of false positives. In this work, a new statistical test obtained from a convolution of multivariate hypergeometric distributions, the Hy-test, is proposed to address these issues. Hy-test has been carried out on transcriptomic data from breast and kidney cancer tissues, and it has been compared with other differential expression analysis methods. Hy-test allows implicit discretization of the expression profiles and is more selective in retrieving both differential expressed genes and terms of Gene Ontology. Hy-test can be adopted together with other tests to retrieve information that would remain hidden otherwise, e.g., terms of (1) cell cycle deregulation for breast cancer and (2) "programmed cell death" for kidney cancer.

摘要

差异表达的统计检验通常存在两个问题。首先,当应用于小的和偏态的数据集中时,它们的统计功效往往受到限制。其次,基因表达数据通常通过应用任意的标准来限制假阳性的数量来离散化。在这项工作中,提出了一种新的统计检验方法,即多元超几何分布的卷积检验(Hy-test),以解决这些问题。在乳腺癌和肾癌组织的转录组数据上进行了 Hy-test,并与其他差异表达分析方法进行了比较。Hy-test 允许对表达谱进行隐式离散化,并且在检索差异表达基因和基因本体论术语方面更具选择性。Hy-test 可以与其他测试一起使用,以检索否则可能隐藏的信息,例如,(1)乳腺癌的细胞周期失调和(2)肾癌的“程序性细胞死亡”术语。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/62b1/9117296/88df87423a37/41598_2022_12246_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验