Suppr超能文献

基于计算机人工智能数据挖掘的电子商务欺诈检测模型。

E-Commerce Fraud Detection Model by Computer Artificial Intelligence Data Mining.

机构信息

Purchasing Department, Sinosteel Xingtai Machinery & Mill Roll Co., Ltd., Xingtai 054000, Hebei, China.

出版信息

Comput Intell Neurosci. 2022 May 9;2022:8783783. doi: 10.1155/2022/8783783. eCollection 2022.

Abstract

This study aims to identify e-commerce fraud, solve the financial risks of e-commerce enterprises through big data mining (BDM), further explore more effective solutions through Information fusion technology (IFT), and create an e-commerce fraud detection model (FDM) based on IFT (namely, computer technology (CT), artificial intelligence (AI), and data mining (DM). Meanwhile, BDM technology, support vector machine (SVM), logistic regression model (LRM), and the proposed IFT-based FDM are comparatively employed to study e-commerce fraud risks deeply. Specifically, the LRM can effectively solve data classification problems. The proposed IFT-based FDM fuses different information sources. The experimental findings corroborate that the proposed Business-to-Business (B2B) e-commerce enterprises-oriented IFT-based FDM presents significantly higher fraud identification accuracy than SVM and LRM. Therefore, the IFT-based FDM is superior to SVM and LRM; it can process and calculate e-commerce enterprises' financial risk data from different sources and obtain higher accuracy. BDM technology provides an important research method for e-commerce fraud identification. The proposed e-commerce enterprise-oriented FDM based on IFT can correctly analyze enterprises' financial status and credit status, obtaining the probability of fraudulent behaviors. The results are of great significance to B2B e-commerce fraud identification and provide good technical support for promoting the healthy development of e-commerce.

摘要

本研究旨在通过大数据挖掘(BDM)识别电子商务欺诈,解决电子商务企业的财务风险,进一步通过信息融合技术(IFT)探索更有效的解决方案,并基于信息融合技术(IFT)创建电子商务欺诈检测模型(FDM)(即计算机技术(CT)、人工智能(AI)和数据挖掘(DM)。同时,比较采用 BDM 技术、支持向量机(SVM)、逻辑回归模型(LRM)和基于 IFT 的提议 FDM 深入研究电子商务欺诈风险。具体来说,LRM 可以有效地解决数据分类问题。基于提议的 IFT 的 FDM 融合了不同的信息源。实验结果证实,针对企业对企业(B2B)电子商务企业的基于提议的 IFT 的 FDM 比 SVM 和 LRM 具有更高的欺诈识别准确性。因此,基于 IFT 的 FDM 优于 SVM 和 LRM;它可以处理和计算来自不同来源的电子商务企业的财务风险数据,并获得更高的准确性。BDM 技术为电子商务欺诈识别提供了重要的研究方法。基于 IFT 的针对电子商务企业的提议 FDM 可以正确分析企业的财务状况和信用状况,获得欺诈行为的概率。研究结果对 B2B 电子商务欺诈识别具有重要意义,为促进电子商务的健康发展提供了良好的技术支持。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d8bb/9110132/2dda66f4d1dd/CIN2022-8783783.008.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验