Suppr超能文献

遗传背景和错译频率决定了错译 tRNASerUGG 的影响。

Genetic background and mistranslation frequency determine the impact of mistranslating tRNASerUGG.

机构信息

Department of Biochemistry, The University of Western Ontario, London, ON N6A 5C1, Canada.

Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA.

出版信息

G3 (Bethesda). 2022 Jul 6;12(7). doi: 10.1093/g3journal/jkac125.

Abstract

Transfer RNA variants increase the frequency of mistranslation, the misincorporation of an amino acid not specified by the "standard" genetic code, to frequencies approaching 10% in yeast and bacteria. Cells cope with these variants by having multiple copies of each tRNA isodecoder and through pathways that deal with proteotoxic stress. In this study, we define the genetic interactions of the gene encoding tRNASerUGG,G26A, which mistranslates serine at proline codons. Using a collection of yeast temperature-sensitive alleles, we identify negative synthetic genetic interactions between the mistranslating tRNA and 109 alleles representing 91 genes, with nearly half of the genes having roles in RNA processing or protein folding and turnover. By regulating tRNA expression, we then compare the strength of the negative genetic interaction for a subset of identified alleles under differing amounts of mistranslation. The frequency of mistranslation correlated with the impact on cell growth for all strains analyzed; however, there were notable differences in the extent of the synthetic interaction at different frequencies of mistranslation depending on the genetic background. For many of the strains, the extent of the negative interaction with tRNASerUGG,G26A was proportional to the frequency of mistranslation or only observed at intermediate or high frequencies. For others, the synthetic interaction was approximately equivalent at all frequencies of mistranslation. As humans contain similar mistranslating tRNAs, these results are important when analyzing the impact of tRNA variants on disease, where both the individual's genetic background and the expression of the mistranslating tRNA variant need to be considered.

摘要

转移 RNA 变体增加了翻译错误的频率,即误将非“标准”遗传密码指定的氨基酸掺入到接近酵母和细菌 10%的频率。细胞通过具有每个 tRNA 同功解码器的多个拷贝以及处理蛋白毒性应激的途径来应对这些变体。在这项研究中,我们定义了编码 tRNASerUGG,G26A 的基因的遗传相互作用,该 tRNA 会在脯氨酸密码子处误译丝氨酸。使用酵母温度敏感等位基因的集合,我们确定了翻译错误的 tRNA 与代表 91 个基因的 109 个等位基因之间的负合成遗传相互作用,其中近一半的基因具有 RNA 处理或蛋白质折叠和周转的作用。通过调节 tRNA 的表达,我们然后比较了在不同误译频率下,鉴定出的部分等位基因的负遗传相互作用的强度。所有分析菌株的翻译错误频率都与细胞生长的影响相关;然而,在不同的翻译错误频率下,根据遗传背景,与 tRNASerUGG,G26A 的合成相互作用的程度存在显著差异。对于许多菌株,与 tRNASerUGG,G26A 的负相互作用的程度与翻译错误的频率成正比,或者仅在中间或高频率下观察到。对于其他菌株,合成相互作用在所有翻译错误频率下大致相等。由于人类含有类似的翻译错误的 tRNA,因此当分析 tRNA 变体对疾病的影响时,这些结果非常重要,其中需要考虑个体的遗传背景和翻译错误的 tRNA 变体的表达。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2ce3/9258585/586927c6d5ae/jkac125f1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验