Department of Psychology, University of California.
Department of Cognitive Sciences, University of California.
Cogn Sci. 2022 May;46(5):e13137. doi: 10.1111/cogs.13137.
The present paper examines a type of abstract domain-general knowledge required for the process of constructing useable domain-specific causal knowledge, the evident goal of causal learning. It tests the hypothesis that analytic knowledge of causal-invariance decomposition functions is essential for this process. Such knowledge specifies the decomposition of an observed outcome into contributions from constituent causes under the default assumption that the empirical knowledge acquired is invariant across contextual/background causes. The paper reports two psychological experiments (and replication studies) with pre-school-age children on generalization across contexts involving binary cause and effect variables. The critical role of causal invariance for constructing useable causal knowledge predicts that even young children should (tacitly) use the causal-invariance decomposition function for such variables rather than a non-causal-invariance decomposition function common in statistical practice in research involving binary outcomes. The findings support the rational shaping of empirical causal knowledge by the causal-invariance constraint, ruling out alternative explanations in terms of non-causal-invariance decomposition functions, heuristics, and biases. For the same causal structure involving candidate causes and outcomes that are binary variables with a "present" value and an "absent" value, the paper argues against the possibility of multiple rational characterizations of the "sameness of causal influence" that justifies generalization across contexts.
本文考察了一种抽象的领域一般性知识,这种知识对于构建可用的领域特定因果知识的过程是必需的,而因果学习的明显目标正是构建可用的领域特定因果知识。本文检验了这样一个假设,即对因果不变性分解函数的分析性知识对于这一过程是必不可少的。这种知识指定了在默认假设下,将观察到的结果分解为组成原因的贡献,该假设是所获得的经验知识在上下文/背景原因上是不变的。本文报告了两项针对学前儿童的关于涉及二元因果变量的跨情境推广的心理实验(和复制研究)。因果不变性对于构建可用因果知识的关键作用预测,即使是年幼的儿童也应该(默会地)使用因果不变性分解函数,而不是在涉及二元结果的研究中统计实践中常用的非因果不变性分解函数。这些发现支持了因果不变性约束对经验因果知识的理性塑造,排除了基于非因果不变性分解函数、启发式和偏差的替代解释。对于涉及候选原因和结果的相同因果结构,这些原因和结果是具有“存在”值和“不存在”值的二元变量,本文反对存在多种合理描述“因果影响的一致性”的可能性,因为这种一致性证明了跨情境的推广是合理的。