Suppr超能文献

基于范德华异质结构的高性能电极用于神经记录。

A High-Performance Electrode Based on van der Waals Heterostructure for Neural Recording.

机构信息

Tianjin Key Laboratory of Brain Science and Neural Engineering, Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin 300072, China.

State Key Laboratory of Chem/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China.

出版信息

Nano Lett. 2022 Jun 8;22(11):4400-4409. doi: 10.1021/acs.nanolett.2c00848. Epub 2022 May 19.

Abstract

Neural electrodes have been widely used to monitor neurological disorders and have a major impact on neuroscience, whereas traditional electrodes are limited to their inherent high impedance, which makes them insensitive to weak signals during recording neural signals. Herein, we developed a neural electrode based on the graphene/Ag van der Waals heterostructure for improving the detection sensitivity and signal-to-noise ratio (SNR). The impedance of the graphene/Ag electrode is reduced to 161.4 ± 13.4 MΩ μm, while the cathode charge-storage capacity (CSCc) reaches 24.2 ± 1.9 mC cm, which is 6.3 and 48.4 times higher than those of the commercial Ag electrodes, respectively. Density functional theory (DFT) results find that the Ag-graphene interface has more doped electronic states, providing faster electron transfer and enhanced interfacial transport. detection sensitivity and SNR of graphene/Ag electrodes are significantly improved. The current work provides a feasible solution for designing brain electrodes to monitor neural signals more sensitively and accurately.

摘要

神经电极已被广泛用于监测神经疾病,并对神经科学产生了重大影响,而传统的电极受到固有高阻抗的限制,这使得它们在记录神经信号时对弱信号不敏感。在此,我们开发了一种基于石墨烯/Ag 范德华异质结的神经电极,以提高检测灵敏度和信噪比 (SNR)。石墨烯/Ag 电极的阻抗降低到 161.4 ± 13.4 MΩμm,而阴极电荷存储容量 (CSCc) 达到 24.2 ± 1.9 mC cm,分别是商用 Ag 电极的 6.3 和 48.4 倍。密度泛函理论 (DFT) 结果发现,Ag-石墨烯界面具有更多的掺杂电子态,提供更快的电子转移和增强的界面传输。石墨烯/Ag 电极的检测灵敏度和 SNR 得到了显著提高。本工作为设计更灵敏、更准确地监测神经信号的脑电极提供了一种可行的解决方案。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验